

€¢oĥômetri¢\$

Timberland's Financial Optimization

FINANCIAL OPTIMIZATION USING THE DATA YOU ALREADY HAVE

William E. Schlosser, Ph.D.

Schlosser@Resource-Analyss.com http://Forest-Econometrics.com/

FRASS Action Team

Forest Resource Analysis System Software

FRASS Action Team

oĥômetri¢\$

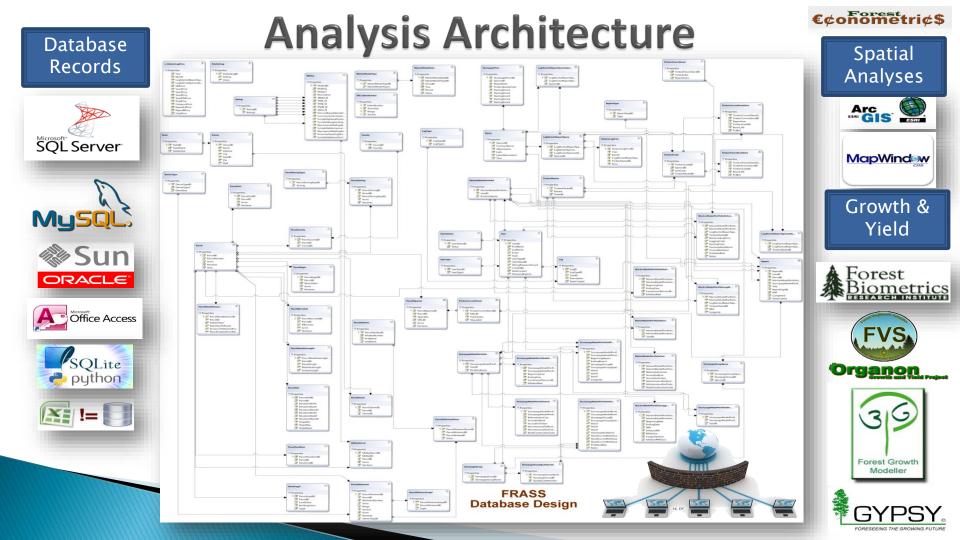
Actionable Decision Data

Getting Value from your data

Spatial (GIS)

- Stand Boundaries
- Stream Networks
- Road Networks
 - Non-Op & Distance
- Soil Types
 - Site Index

- Biometric
- Growth & Yield
- Volume articulated by Years
- Merchandized Volume:
 - Stand
 - Sort & Grade



Economic

- Real Price Appreciation
 - Delivered Log Market Value
 - Logging Costs
 - Trucking Costs
 - Road Construction
- Inflation Rate
- Discount Rate

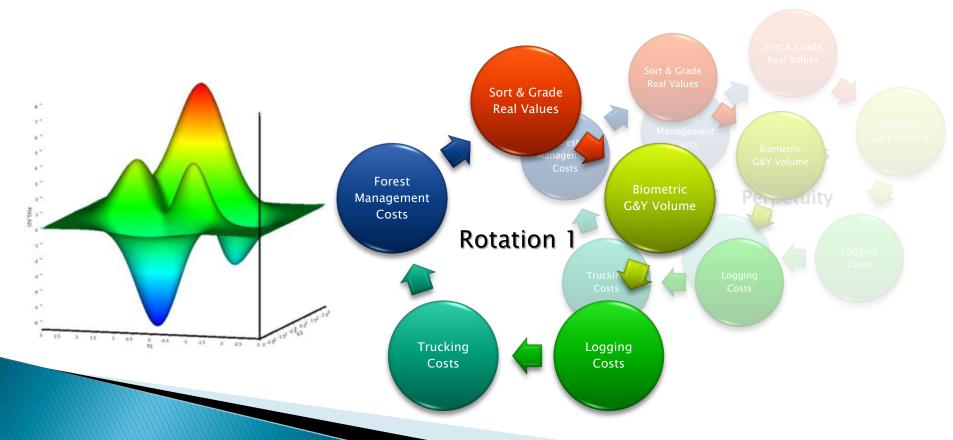
Why use this approach?

- SQP builds from basic Linear Programming
 - It includes Nonlinear and Linear Optimization
- Linear Programming is for optimization of a linear objective function, subject to linear equality and inequality constraints.
 - What is the lowest cost?
- SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable: <u>constrained nonlinear optimization</u>.
 - What is the optimal combination of 200 factors at each evaluation point, each moving independently through perpetuity?

Mechanics of Evaluation

- Information Reduced to Database Collections
 - GIS Data
 - Stand Boundary Area
 - Road Network distances & class
 - Stream Network reach & extent (riparian)
 - G&Y Volume by Sort & Grade
 - Historic Log Sort Values (Nominal)
 - Historic Economic data

- Programming: ASP.NET foundation
 - SQL data retrieval
 - Linear & Non-Linear optimization protocols
 - Sequentially continuous optimization analyses
 - 1,600 simultaneous optimizations, per timber stand, per rotation



Sequential Quadratic Programming Tools of Evaluation

🖳 Windows Task Manager	
File Options View Help	
Applications Processes Services	Performance Networking Users
CPU Usage CPU Usage 30 %	
Memory Physical M 4.81 GB	Memory Usage History
Physical Memory (MB) Total 24567 Cached 19679 Available 19631 Free 14	9 Threads 1303 1 Processes 63
Kernel Memory (MB) Paged 778 Nonpaged 180	
Processes: 63 CPU Usage: 30	0% Physical Memory: 20%

The most successful method for solving nonlinearly constrained optimization problems

Extend Your Economic View

Not about a single rotation's optimum

- Traditionally, the single rotation's biological optimum has been the target.
- Financially optimum became the next target – but only for the current rotation.

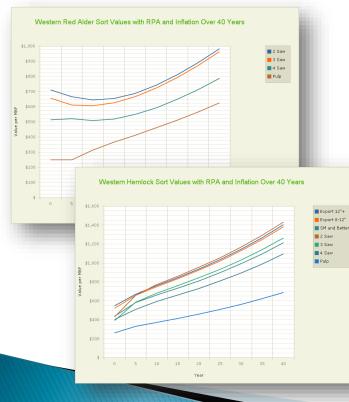
Reorpactority2

630,7465->r806,0s

Extend Your Economic View

Not about a single rotation's optimum


• Link Rotations $1 \rightarrow 2 \rightarrow$ Perpetuity



Extended Economic View

Revenues & Costs independently considered with RPA Forecast Tool

In the Long-Run, everything is Variable A Look into the Proof of Concept

Market Model Name RPA Portfolio Name			andowner Discount Rate	Reforestation Cost Access Fee (Timber)		ber) N) Maintenance Fee		New Logging Road Construction			
PSLMA 20160329 Cascadia 20160329			.71%	\$375/Acre \$0.50/MBF/Mile \$1.33/MBF/Mile		\$19,500/Mile						
Sort			Longevity Term	Profit & Risk	Overhead &			Projec	cted Delivered Log Value			
3011	Market Value	RPA	Longevity rem	FIOIR & RISK	Administration	Logging Cost	nauing	2016	2020	2030	2040	2050
Western Red Ald												
2 Saw	\$711	0.0869	10.91	0.04	\$30	\$90	\$60	\$711	\$662	\$707	\$789	\$917
3 Saw	\$657	0.0676	10.91	0.04	\$30	\$90	\$60	\$657	\$608	\$665	\$756	\$888
4 Saw	\$514	0.0797	10.91	0.04	\$30	\$90	\$60	\$514	\$519	\$558		\$732
Pulp	\$251	-0.0705	8.75	0.04	\$30	\$30	\$60	\$251	\$242	\$338	\$437	\$548
Black Cottonwoo	<u>d</u>											
2 Saw	\$438	-0.0946	1.75	0.04	\$30	\$90	\$60	\$438	\$465	\$573	\$701	\$858
3 Saw	\$415	-0.0512	2.91	0.04	\$30	\$90	\$60	\$415	\$429	\$542	\$665	\$814
4 Saw/CNS	\$378	-0.0665	2.16	0.04	\$30	\$90	\$60	\$378	\$388	\$481	\$589	\$721
Pulp	\$226	-0.0509	11.25	0.04	\$30	\$30	\$60	\$226	\$176	\$248	\$328	\$419
Douglas-fir												
Export 12"+	\$590	-0.1697	2.16	0.04	\$30	\$90	\$60	\$590	\$783	\$969	\$1,186	\$1,45
Export 8-12"	\$548	-0.2574	2.16	0.04	\$30	\$90	\$60	\$548	\$745	\$927	\$1,134	\$1,38
SM and Better	\$629	-0.1570	3.83	0.04	\$30	\$90	\$60	\$629	\$819	\$1,094	\$1,352	\$1,65
2 Saw	\$545	-0.2193	2.16	0.04	\$30	\$90	\$60	\$545	\$709	\$880	\$1,077	\$1,31
3 Saw	\$515	-0.2099	2.16	0.04	\$30	\$90	\$60	\$515	\$668	\$828	\$1,013	\$1,24
4 Saw	\$512	-0.2069	2.16	0.04	\$30	\$90	\$60	\$512	\$611	\$758	\$928	\$1,13
Chip-n-Saw	\$449	-0.2304	2.16	0.04	\$30	\$90	\$60	\$449	\$422	\$524	\$641	\$785
Pulp	\$281	-0.1167	7.00	0.04	\$30	\$30	\$60	\$281	\$323	\$447	\$569	\$705
Western Redceda	ar											
Camprun	\$1,437	0.1692	3.16	0.04	\$30	\$90	\$60	\$1,437	\$1,097	\$1,338	\$1,638	\$2,00
Western Hemlock	<u>k</u>											
Export 12"+	\$547	-0.1360	4.08	0.04	\$30	\$90	\$60	\$547	\$651	\$826	\$1,015	\$1,24
Export 8-12"	\$523	-0.1412	4.08	0.04	\$30	\$90	\$60	\$523	\$641	\$814	\$1,001	\$1,22
SM and Better	\$438	-0.1657	2.91	0.04	\$30	\$90	\$60	\$438	\$566	\$718	\$880	\$1,07
2 Saw	\$429	-0.1500	4.58	0.04	\$30	\$90	\$60	\$429	\$639	\$836	\$1,034	\$1,26
3 Saw	\$391	-0.1446	4.58	0.04	\$30	\$90	\$60	\$391	\$567	\$739	\$914	\$1,12
4 Saw	\$403	-0.1300	4.58	0.04	\$30	\$90	\$60	\$403	\$495	\$641	\$793	\$971
Pulp	\$262	-0.2118	3.50	0.04	\$30	\$30	\$60	\$262	\$324	\$406	\$499	\$610

Rotation 1		Rotation 2	Perpetuity	Optimal Cor	mbination
Total	R1	R2	Year R	2 SE	V (45)
This harvests R1 in	n 2016				
\$105,37	78.72	\$78,395.35	30 (2046)	\$6,473.66	\$20,509.71
\$112,91	2.68	\$78,395.35	35 (2051)	\$16,574.30	\$17,943.03
\$116,51	4.03	\$78,395.35	40 (2056)	\$22,421.12	\$15,697.56
\$119,05	50.19	\$78,395.35	45 (2061)	\$26,921.74	\$13,733.10
\$118,68	39.62	\$78,395.35	50 (2066)	\$28,279.79	\$12,014.48
\$118,39	9.28	\$78,395.35	55 (2071)	\$29,493.00	\$10,510.93
\$118,27	2.66	\$78,395.35	60 (2076)	\$30,681.76	\$9,195.55
\$116,56	58.78	\$78,395.35	65 (2081)	\$30,128.66	\$8,044.78
\$114,76	55.11	\$78,395.35	70 (2086)	\$29,331.74	\$7,038.02
\$112,70)1.32	\$78,395.35	75 (2091)	\$28,148.72	\$6,157.25
\$110,37	79.47	\$78,395.35	80 (2096)	\$26,597.42	\$5,386.70
\$107,62	20.94	\$78,395.35	85 (2101)	\$24,513.00	\$4,712.59
\$105,82	23.29	\$78,395.35	90 (2106)	\$23,305.11	\$4,122.83
\$103,36	55.88	\$78,395.35	95 (2111)	\$21,363.65	\$3,606.88
\$100,95	6.16	\$78,395.35	100 (2116)	\$19,405.31	\$3,155.50
\$98,94	10.75	\$78,395.35	105 (2121)	\$17,784.79	\$2,760.61

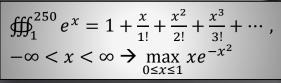
Rotation	1	Rotation 2	Perpetuity	Optimal Com	bination
Total	R1	R2 Y	ear R2	SEV	(45)
This harvests R	1 in 2025				
\$107	,494.52	\$86,858.56	30 (2055)	\$4,938.40	\$15,697.56
\$113	3,266.17	\$86,858.56	35 (2060)	\$12,674.50	\$13,733.10
\$116	6,028.52	\$86,858.56	40 (2065)	\$17,155.48	\$12,014.48
\$117	,972.70	\$86,858.56	45 (2070)	\$20,603.21	\$10,510.93
\$117	,697.96	\$86,858.56	50 (2075)	\$21,643.85	\$9,195.55
\$117	,476.19	\$86,858.56	55 (2080)	\$22,572.85	\$8,044.78
\$117	,379.43	\$86,858.56	60 (2085)	\$23,482.85	\$7,038.02
\$116	6,075.40	\$86,858.56	65 (2090)	\$23,059.58	\$6,157.25
\$114	,694.95	\$86,858.56	70 (2095)	\$22,449.68	\$5,386.70
\$113	3,115.39	\$86,858.56	75 (2100)	\$21,544.24	\$4,712.59
\$111	,338.32	\$86,858.56	80 (2105)	\$20,356.92	\$4,122.83
\$109	,227.02	\$86,858.56	85 (2110)	\$18,761.57	\$3,606.88
\$107	,851.15	\$86,858.56	90 (2115)	\$17,837.08	\$3,155.50
\$105	,970.31	\$86,858.56	95 (2120)	\$16,351.14	\$2,760.61
\$104	,125.98	\$86,858.56	100 (2125)	\$14,852.29	\$2,415.13
\$102	583 44	\$86 858 56	105 (2130)	\$13,611,99	\$2 112 89

Rotation 1		Rotation 2	Perpetuity		Optimal Com	bination
Total	R1	R2	Year	R2	SEV	(45)
This harvests R1 in	2020					
\$109,422	2.13	\$85,828.79	30 (2050)		\$5,650.31	\$17,943.03
\$116,017	.55	\$85,828.79	35 (2055)		\$14,491.20	\$15,697.56
\$119,173	3.05	\$85,828.79	40 (2060)		\$19,611.17	\$13,733.10
\$121,394	.32	\$85,828.79	45 (2065)		\$23,551.06	\$12,014.48
\$121,079	.87	\$85,828.79	50 (2070)		\$24,740.16	\$10,510.93
\$120,826	5.23	\$85,828.79	55 (2075)		\$25,801.90	\$9,195.55
\$120,715	5.58	\$85,828.79	60 (2080)		\$26,842.02	\$8,044.78
\$119,224	.98	\$85,828.79	65 (2085)		\$26,358.18	\$7,038.02
\$117,647	.06	\$85,828.79	70 (2090)		\$25,661.02	\$6,157.25
\$115,841		\$85,828.79	75 (2095)		\$24,626.06	\$5,386.70
\$113,810).27	\$85,828.79	80 (2100)		\$23,268.89	\$4,712.59

3.3% Value increase +\$4,0155 year shortening of current Rotation15 year shortening of next Rotation

Forest

Financial Optimization


Hundreds of variables, thousands of possible outcomes, one Optimum

Stand Info		Current F	Rotation	Next Rotation			Third Rotation Into Perpetuity		Total Present Value	
Stand ID Number	Operable Commercial Timber Land Acres	Harvest Year	Net Present Value	Rotation Length (years)	Net Present Value	Rotation Length	Soil Expectation Value (Present Value)	Stand	Per Acre	
19009430	4.08	2065	\$10,343	50	\$3,080	45	\$1,165	\$14,588	\$3,577	
19359150	12.85	2020	\$85,829	45	\$23,551	45	\$12,014	\$121,394	\$9,447	
19918010	8.60	2045	\$52,332	50	\$11,081	45	\$4,192	\$67,605	\$7,864	
		Schedu	ıled In	Current Cost Future			e Cost	Discounted	Road Cost	
New Road O	Construction									
	Total Value based on Operable Commercial Timber Land Acres:							\$203,588	\$7,976/Acre	
	Value per Acre (Forested Acres):								\$5,567/Acre	
	Value per Acre (Entire Parcel):						39.2 Acres		\$5,189/Acre	
	Bare Land Value (Entire Parcel):						39.2 Acres	\$112,286	\$2,862/Acre	

Harvest Volumes & Value Summary

Forest Resource Analysis System Software

- Repeatable, with sensitivity analysis made possible for thousands of variables.
- Uniform Asset Value
 - Appraisers
 - CFO
 - Forest Managers

€¢ohometri¢\$

SM and Better Real

Chart by D&D Larix, LLC, Delivered Log Market Data RISI Log Lines & Washington DNR

roducer Price Index Data

€conometric\$

2 Saw Real

Chart by D&D Larix, LLC.

Delivered Log Market Data RISI Log Lines & Washington DNR Producer Price Index Data

€conometric\$

€¢oĥômetri¢\$

Timberland's Financial Optimization

FINANCIAL OPTIMIZATION USING THE DATA YOU ALREADY HAVE

William E. Schlosser, Ph.D.

Schlosser@Resource-Analyss.com http://Forest-Econometrics.com/

