

Policy Question Economic Question

- Conservation Question: where to site parks to conserve species?
- But also: where to develop to conserve species?
- Spatial economic decisions
- Spatial behavior of species
- Related analyses
 - Many fishery/marine papers: metapopulations of fish across space
 - Bauer et al. (2010): development patterns with amphibians
- Siting development
 - Location choices for different levels of development
 - s.t. minimize impact on migratory species
- Conservation actions

Spatial Development or Conservation Decisions Must Reflect How Species Move

- Density Dispersal
 - Fish move "as if" searching for resources
 - Little attention to dispersal matrix
- · Migratory species
 - · Different types of movement
 - · The path matters
- Here: modify density dispersal "surf the green wave"
- Other factors in movement decisions:
 - Fidelity to locations energy losses
 - Sensitivity/Tolerance to development energy losses
 - Availability and quality of alternative routes

Spatial Representation and Migratory Path

Herd Movement Decision: are net resources higher next door?

Net resources: energy sources less energy costs

BUT: Forage resources change over the year and with species presence:

Surfing the Green-up of Forage

Effective density dispersal but with intratemporal resource growth varying across space

$$\min_{W} \quad \widetilde{N}(t_0) - \widetilde{N}(t_{SS}) \; ext{ s.t.}$$

Develop. restrict. $\overline{W} = \sum_{(i,j) \in D} \left(w_{ij} \middle| \widehat{w} \geq w_{ij} \geq 0 \right)$ Forage dynamic $f_{ij}(t) = \widehat{f}_{ij}(t-1) \left(1 + \varphi_{ijt} \left(\widehat{f}_{ij}(t-1) \right) \right)$

Forage dynamic
$$f_{ij}(t) = \hat{f}_{ij}(t-1) \left(1 + \varphi_{ijt} \left(\hat{f}_{ij}(t-1)\right)\right)$$
 Herd dynamic
$$\varepsilon_{ij}(t) = \varepsilon \left(f_{ij}(t), \gamma_{ij}(t), w_{ij}, N(t-1)\right)$$

$$\widetilde{N}(t) = \widetilde{e}\left(f_{ij}(t), \gamma_{ij}(t), w_{ij}, N(t-1)\right)$$

$$\widetilde{N}(t) = \widetilde{N}(t-1)\left(1 + \sigma_t(\widetilde{e}(t-1))\right)$$

Development

- Development can be separated into w_{ij} sites
- Development value homogeneous
- Production per site is not affected by location nor concentration as long as: w_{ij} ≤ ŵ.

Potential Herd Responses

- Maintain migration path: losses due to development stress
- Deviate: Less forage, losses due to fidelity stress.
- Overstay: Forage in already grazed region, no stress losses. (truncated migration)

Baseline Results: 3 levels of development (W)

Cluster development

Contain energy losses to one area

Where? Minimize energy loss

- Development level determines herd response
- Maintain migration path or deviate once:
 - Near winter range low forage
- Double deviation from migratory path:
 - Near summer range abundant forage on alt. path

Shift of Tipping Point: Development Size vs. Tolerance

Tolerant ungulates respond by maintain migration despite large W Intolerant ungulates deviate even at small W

Migratory Path Fidelity

- · Low fidelity species easily deviate
 - Optimal location: induce deviation near summer range
- High fidelity species maintain migratory path
 - Optimal location: Induce deviation near winter range/low forage

Functional Form of Tolerance to Development Stress

Tolerance Functional Form: Impact on Development Locations

Increasing marginal stress from development in one location:

- Optimal to distribute development
- High development: induce deviation by clustering

Tolerance Functional Form

High tolerance species: spread development, herd maintains

Low fidelity species:

- Low development: spread development, herd maintains
- · High development: cluster, induce deviation

Tradeoffs: Development levels and Species Populations

- Deviation induced, no additional species losses
- Marginal species losses differ across tolerance form

Optimal Tradeoffs? What is the Objective?

Maximize development value s.t. min impact on species population level

•Heterogeneous development net values?

Max net social benefits

- Assign value to species populations
- Assign value to migration itself?
- Assign value to species in particular locations?

Conservation Policy: Resources

- Resource Enrichment in Path
 - · Offsets energy losses for high fidelity species
 - Can avoid deviation for low fidelity and low tolerance species
 - Can truncate or slow the migration
- Resource Enrichment on Public Land (alternative path)
 - Can induce deviation away from development for low fidelity and low tolerance species
 - Can truncate or slow migration

EITHER WAY: Can disrupt the migration

Conservation Policy: Pop-up

- Temporary reduction of activities
 - No activities during species use of site
 - Costs a portion of development profits
 - Gains higher ss species populations
- In stopover
 - Costs more due to 3 months of species use
 - •Benefits species more
- Partial reductions in stressors
 - Costs less
 - Shifts development-population tradeoff curves

Conservation Policy: Corridors; Bridges over Barriers

- Corridors
 - Functional connectivity issues
 - Will the species use it?
- Physical barriers to movement
 - How do herds adjust? What info do they use?
 - Do they move through with high mortality?
 - Do they truncate the migration?
- Wildlife Bridges
 - What aspects of the species' decisions addressed?

Stylized Example from Wyoming

- High development value in stopover
- Herds: Speeding up in stopover due to development
- Policy? Diagonal drilling, fencing/bridges to induce deviation, payments for pop-up

Further development in the stopover?

Our parameters:

- never see optimal development in the stopover
- development there is costly in 3 months

With larger development (W>6):

The herd can change the stopover location (deviate)

Or arrive earlier to the summer range

$$W=12$$

Conclusions: Relationship to Literature

- Species' spatial decisions to generate migration
 - Integrate forage growth with energy-based movement
- Species' characteristics inform species decisions
 - fidelity; tolerance
- Beyond density dispersal
 - More than pure resource-based decisions

Conclusions: Development Siting

- Species' spatial decisions influence development patterns
 - Do not focus only on endpoints
 - High fidelity and low tolerance: cluster development near winter range
 - Low fidelity and high tolerance: induce deviation near summer range
- Know your species:
 - Assume perfect fidelity when low? Place development in the wrong location

Conclusions: Conservation

- Resource enrichment can backfire
- Functional connectivity species' choices
 - "if you build it, they will come"??
- Pop-up allows for lower development costs than permanent
- Corridors and bridges
 - Work with herd decisions to make effective

