

Prescribed Fires as a Climate Adaptation Tool: An Econometric Analysis

Yukiko Hashida, University of Georgia

<u>Dave Lewis, Oregon State University</u>

Karen Cummins, Tall Timbers Research

Thanks to funding sources:

National Institute of Food and Agriculture

September 29, 2023

Prescribed fire

- Prescribed fires consist of controlled burns that can provide benefits:
 - Reduces hazardous fuels and fire spread
 - Promote growth of commercially valuable trees
 - Improve habitat for some wildlife species
- Prescribed fires can present challenges:
 - Air quality
 - Risk of escaped wildfire
 - Liability
- Prescribed fires are more common in the southeastern U.S.

Economic Issues and Climate Change

- Prescribed fires can be cast as a (costly) protection effort against wildfire
- Economic theory of costly protection of forests
 - Originating in Reed (1984; 1987) and extended by many others (e.g. Yoder 2004; Amacher et al. 2005; Lauer et al. 2017; etc.)
 - Optimal protection depends on wildfire risk (Amacher et al. 2005)
- Climate change linkage to wildfire:
 - Increasing wildfire arrival and risk (e.g. Abatzoglou and Williams 2016)
 - More frequent large wildfires are causing large economic costs, through channels like PM 2.5 (Burke et al. 2021)

Research Questions

- How is the amount of prescribed burning by private landowners related to climate change? We want to describe the adaptation channel.
- Can we derive econometric evidence for prescribed fire as a climate adaptation tool:
 - The link between climate / wildfire risk on prescribed burning by private landowners?
 - The link between climate / prescribed burning on wildfire occurrence?

Theoretical foundation - Faustmann

Faustmann rotation model

Suppose landowner maximizes stand value V by choosing the optimal rotation length T, then the value of bare timberland is:

$$V^{bare} = \frac{[P*F(T)-C]e^{-rT}}{1-e^{-rT}}$$

Where F(t) is tree volume at time t, P is constant perunit stumpage prices, C is a regeneration cost, and r is the discount rate.

Theoretical foundation – Reed (1984)

The value of the stand <u>and</u> management behavior change with wildfire risk

wildfire: $T^* < T$

13

Theoretical foundation – Reed (1984)

Reed (1984) extended the Faustmann model to incorporate fire risk

Suppose fire occurs independently at an average rate of λ per unit time (a Poisson process), and no any salvage value once fire arrives. Then the value of bare timberland becomes:

$$V^{bare} = \frac{(r+\lambda)[P*F(T)-c_1]e^{-(r+\lambda)T}}{r(1-e^{-(r+\lambda)T})} - \frac{\lambda}{r}c_2$$

Poisson fire risk parameter λ implicitly increases the landowners' discount rate, leading to a shorter rotation age.

Faustmann rotation model

VS

Suppose landowner maximizes stand value V by choosing the optimal rotation length T, then the value of bare timberland is:

$$V^{bare} = \frac{[P*F(T)-c_1]e^{-rT}}{1-e^{-rT}}$$

Where F(t) is tree volume at time t, P is constant per-unit stumpage prices, C is a regeneration cost, and r is the discount rate.

Theoretical foundation — Costly Protection

Reed (1984) extended the Faustmaan model to incorporate fire risk

Suppose fire occurs independently at an average rate of λ per unit time (a Poisson process), and no any salvage value once fire arrives. Then the value of bare timberland becomes:

$$V^{bare} = \frac{(r+\lambda)[P*F(T)-c_1]e^{-(r+\lambda)T}}{r(1-e^{-(r+\lambda)T})} - \frac{\lambda}{r}c_2$$

Costly Protection Literature:

- λ can be altered by protection effort
- E.g. Reed 1987; Yoder 2004; Amacher et al. 2005; Lauer et al. 2017

Prescribed burning and climate affect wildfire risk λ

 Suppose λ is an increasing function of the climate variable (C) and a decreasing function of prescribed burning effort (PB):

$$\lambda(C, PB) \Rightarrow \lambda'(C) > 0 \text{ and } \lambda'(PB) < 0$$

Costly Protection (Following Amacher et al.'s (2009) depiction)

• The value of bare timberland is:

$$V^{bare} = \frac{[r + \lambda(C, PB)][P * F(T) - c_1(PB)]e^{-[r + \lambda(C, PB)]T}}{r(1 - e^{-[r + \lambda(C, PB)]T})} - \frac{\lambda(C, PB)}{r}c_2$$

where
$$c_1'(PB) > 0$$
 and $c_1''(PB) > 0$

Theoretical foundation – Describing Prescribed Burning as Climate Adaptation

Optimal Protection

- Suppose $\lambda(C, PB) = \frac{1}{1 + \exp(\alpha_0 C + \alpha_1 PB)}$, where $\alpha_0 < 0, \alpha_1 > 0$
- And $\lambda_0(C) = \lambda(C, PB = 0)$ is fire risk in the absence of protection
- Optimally adapting landowner maximizes land value (V^{bare}) by solving for rotation length (T) and prescribed burning (PB).

*Wildfire risk (λ) and prescribed burning (PB) are simultaneously determined and are altered by climate change

 λ^{***} - λ^{**} = lower wildfire arrival that arises from prescribed burning adaptation (PB^{**} - PB^{*})

Theoretical foundation – Describing Prescribed Burning as Climate Adaptation

Optimal Protection

- Suppose $\lambda(C, PB) = \frac{1}{1 + \exp(\alpha_0 C + \alpha_1 PB)}$, where $\alpha_0 < 0, \alpha_1 > 0$
- And $\lambda_0(C) = \lambda(C, PB = 0)$ is fire risk in the absence of protection
- Optimally adapting landowner maximizes land value (V^{bare}) by solving for rotation length (T) and prescribed burning (PB).

^{*}Wildfire risk (λ) and prescribed burning (PB) are simultaneously determined and are altered by climate change

Empirical analysis

Task:

- Estimate prescribed burning effort as a function of wildfire risk and climate
- Estimate wildfire outcomes as a function of prescribed burning and climate
- Key data (aggregated to county):
 - Non-agricultural prescribed burning panel data for 10 southeastern states, collected from fire permit records by Tall Timbers Research
 - MTBS wildfire data; Short's (2022) wildfire data
 - FIA database
 - Panel dataset from 2010-2021
 - N=801 counties; T=12 years
 - N*T=9,612 observations

Variable	Mean	St. Dev.
# Prescribed Burns (PB)	211.98	346.05
Prescribed Burn acres (2-year roll. avg.)	5839.4	11837
Wildfire acres (2-year roll. avg.)	424.62	5465.8
Wildfire acres (20-year roll. avg.)	522.46	3963.5

Key state level regulations in prescribed burning applications

States	Certified Burner	Written Prescription	Permit	Smoke Plan	Funding/Cost Share
AL	Y	Y	Y	N (voluntary)	Y
AR	N	N	N (notice only)	N (voluntary)	Y
FL	Y	Y	Y	Y	Y
GA	Y	N	Y	Y	Y
LA	Y	Y	N	N (voluntary)	Y
MS	Y	Y	Y	N (voluntary)	Y
NC	Y	Y	Y	Y	Y
SC	Y	Y	N (notice only)	Y	Y
TN	Y	Y	Y	N	Y
VA	Y	Y	N (notice only)	Y	Y

Econometric specification

- Prescribe burning (PB) equation for county c in time t,
 - $PB_{ct} = \gamma_0 + \gamma_1 WB_{ct} + \gamma_2 WB_{ct} * R_{s(c)} + \gamma_3 C_{ct} + \gamma_4 F_{ct} + \alpha_c + \nu_{st} + \varepsilon_{ct}$
- Wildfire burn (WB) equation for county c in time t,
 - $WB_{ct} = \eta_0 + \eta_1 PB_{ct} + \eta_2 C_{ct} + \eta_3 F_{ct} + \tau_c + \xi_{ct}$
 - Variables (c: county, t: time, s: state):
 - *PB_{ct}*: prescribed burning acreage
 - WB_{ct} : wildfire burn acreage
 - $R_{s(c)}$: state regulations dummies for prescribed burning
 - C_{ct} : climate (vapor pressure deficit, mean temp, mean precip.)
 - F_{ct} : Forestry characteristics (avg. volume, site class, stand age, slope, elev, ownership)
 - α_c , τ_c : county fixed effects
 - v_{st} : state-by-year fixed effects

Econometric specification

- Prescribe burning (PB) equation for county c in time t,
 - $PB_{ct} = \gamma_0 + \gamma_1 WB_{ct} + \gamma_2 WB_{ct} * R_{s(c)} + \gamma_3 C_{ct} + \gamma_4 F_{ct} + \alpha_c + \nu_{st} + \varepsilon_{ct}$
- Wildfire burn (WB) equation for county c in time t,
 - $WB_{ct} = \eta_0 + \eta_1 PB_{ct} + \eta_2 WB_{ct} + \eta_3 C_{ct} + \eta_4 F_{ct} + \tau_c + \xi_{ct}$
 - How to measure WB_{ct} and C_{ct} as independent variables?
 - Short term: rolling average of two years preceding year t (e.g. weather)
 - Long term: rolling average of twenty years preceding year t (e.g. climate)
 - Instruments:
 - PB equation: WB instrumented with naturally caused wildfires (e.g. by lightning)
 - WB equation: PB instrumented with forest sector wages, deer harvest counts
 - Specify as a log-log model

Key econometric results in elasticity form

Marginal effects of recent wildfire acreage on prescribed burning

	Short-term wildfire	Long-term wildfire
States with burn permit not required	1.81*** (0.468)	1.02*** (0.171)
States with burn permit required	0.314* (0.170)	0.425*** (0.077)

• Marginal effects of climate (vapor pressure deficit) on prescribed

burning

	Short-term weather	Long-term climate
Average	4.04***	7.613***
	(1.023)	(1.272)

Notes: standard errors in parentheses

*p<0.1; **p<0.05; ***p<0.01

Key econometric results in elasticity form

• Marginal effects of prescribed burning (prior 2 years) on wildfire

	No IVs		IV=forest sector wage; deer harvest
Average	0.001	-0.226**	-0.208**
	(0.001)	(0.111)	(0.099)

• Marginal effects of climate (vapor pressure deficit) on wildfire

	No IVs		IV=forest sector wage; deer harvest
Average	0.996**	3.779***	4.338**
	(0.399)	(0.874)	(1.085)

Notes: standard errors in parentheses

*p<0.1; **p<0.05; ***p<0.01

Simple climate change simulation

- How does projected changes in climate (higher VPD) affect equilibrium prescribed burning and wildfire?
 - Climate projections indicate VPD increases by 12 percent on average (2 to 32 percent range) across study region by 2050.
 - This warmer/drier projection should increase both wildfire and prescribed burning adaptation by landowners.

Simple climate change simulation

- How does projected changes in climate (higher VPD) affect equilibrium prescribed burning and wildfire?
 - Both wildfire (yellow) and prescribed burns (gray) increase.
 - In 20 years, wildfire acreage would have been larger (by ~10k acres) without prescribed burning adaptation (orange line).
 - Prescribed burning would have been lower if wildfire acreage had not increased (blue line).

(a) Clinch County

Simple climate change simulation

- How does projected changes in climate (higher VPD) affect equilibrium prescribed burning and wildfire?
 - Same pattern holds for the four representative counties.
 - Scale differs (see change in axes)
 - Some counties have more acreage prescribed burned than in wildfire (e.g. Volusia Co. FL)
 - Some counties have more acreage in wildfire than prescribed burn (e.g. Clinch Co. GA)

(a) Clinch County

(c) Hyde County

(b) Volusia County

(d) Hendry County

Conclusion

- Simple extension to existing theory suggests prescribed burning is a climate adaptation strategy that interacts with wildfire outcomes.
- Empirical evidence from a 12-year panel across 12 southeastern U.S. states suggests:
 - Landowners respond to recent wildfire with more prescribed burning
 - Elasticity ≈ 1.8 in states without mandated burn permits
 - Elasticity \approx 0.3 in states with mandated burn permits
 - Prescribed burning acreage reduces wildfire acreage (elasticity ≈ 0.21)
 - Warmer and drier climate change (VPD) increase both wildfire (elasticity \approx 4.3) and prescribed burning (elasticity \approx 4), and prescribed burning adaptation slows growth in wildfire acreage.

Thank you

Questions / comments welcome
Dave Lewis
Department of Applied Economics
Oregon State University

lewisda@oregonstate.edu

Thanks to funding sources:

United States Department of Agriculture National Institute of Food and Agriculture