

UNIVERSITY of WASHINGTON

College of the Environment

Environmental and Economic Impact of Export Oriented Residual Biomass Pellet Trade between the PNW and Japan

Presented by
HEMALATHA VELAPPAN

Forestry in the PNW

Forest residues available in the PNW

Wood pellets from residual biomass

Quality of the pellet we tested

b. Torrefied Wood

Chips

a. Standard Wood Chips

(6.5 GJ/m3)

c. Torrefied Wood

Pellets

(16 GJ/m3)

dues Mill Residues Slash Residues
72.75 NA
16.22 NA
3.975 3.39
10.81 0.49
0.24 0.1
<0.01 <0.01
20.85 21.13
19.2 19.48

- Green indicates the pellets have either met or surpassed the ISO standard for the quality parameter
- Red indicates failure to meet the ISO standard for quality parameter

Potential logistics and System boundary

Pellet Demand in Japan

Biomass * 6 Woody biomass derived from thinned wood Methane fermentation gas (derived from biomass) 2,000kW or more Less than 2,000kW 74.42 FY2018 (reference) USD/GJ 2019 39 yen + tax 32 yen + tax 40 yen + tax FY2020 2021 Lead time 20 years

- •JAPAN HAD SET A BIOMASS POWER TARGET FOR FY 2030 AS 3.7% TO 4.6% WHICH IS 20% OF ITS RENEWABLE GENERATION.
- •THIS TARGET WOULD CREATE A
 BIOMASS DEMAND OF AROUND 13-18
 MILLION METRIC TONS (MT) PER YEAR BY
 2030
- •THE FEED-IN TARIFF SYSTEM ENCOURAGES FURTHER ADOPTION

Pellet Life Cycle – SimaPro analysis

Environmental Impact of pellet vs coal

Cost Benefit Analysis – Pellet vs Coal

Costs	Benefits
Initial investment – 10 to 65 million	Producer surplus - current Japanese import price 197 USD/mt (average 156 USD/mt)
Operations and Maintenance – 125 to 178 USD/metric ton	Avoided slash burning costs and externalities
Cost associated with externalities in transporting, producing, and burning pellets	Reduced negative externalities by coal
Consumer surplus	

- Although even the lowest priced pellets are not cost-competitive with coal, the BCA allows to compare coal and pellets in a social surplus perspective.
- The externalities of emissions associated with coal burning are a cost to the society which is not reflected in its price.
- The results of this study showed that these externalities outweigh the loss of consumer surplus producing a positive net benefit NPV in the range of \$11 B for over 10 years.
- High initial investment is a barrier to enter this market.

Conclusion

- 1. Pellets produced from residues in average produce 90% less greenhouse gas emissions (GHG) compared to coal.
- 2. Pellets produced from harvest slash residues, which are otherwise burnt, emits least amount of GHG. Additionally, utilizing the slash residues for producing pellets instead of burning will <u>reduce the local PM2.5 pollution by 66% (white pellets) and 69% (torrefied pellet).</u>
- 3. Transportation which majorly made up of marine transportation contributes to most GHG emissions in the entire pellet supply chain.
- 4. <u>Substituting regular pellets with residual pellets has great benefits to the planet</u>. These benefits come mostly from the avoided pile burning externalities because the raw materials used to produce residual pellets are residues diverted from burning. These residues have less/negligible price and utilizing them as raw materials can reduce the overall pellet production cost.
- 5. Economically substituting coal with pellet may not be beneficial for Japan but considering the hidden environmental costs produced a net social benefit.

Any questions?