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1. Research Landscape: Key Findings

Source: State of Carbon Dioxide Removal report (2023)

* Vast and fast-growing scientific literature on Carbon Dioxide Removal (CDR) of
about 28,000 studies in Web of Science and Scopus alone — two of the largest
English-language bibliographic databases.

« Studies on CDR make up <4% of the scientific literature on climate change but
growing exponentially by =19% per year (1990-2021). Annual publications double
every three to four years.

* Scientific studies on CDR dominated by biochar, soil carbon sequestration &
afforestation/reforestation, accounting for =80% of CDR methods 1n literature.

 Research on biochar is growing faster than that of any other CDR method,

accounting for =40% of the coverage on CDR methods 1n the scientific literature
overall and =50% of the studies published 1n 2021.



Research Landscape: Key Findings (cont)

* Bioenergy with Carbon Capture and Storage (BECCS), as well as Direct
Air Capture with CCS, receive comparatively little attention in the CDR
literature — despite dominating discussions on the role of CDR in climate
change mitigation scenarios and private CDR investment.

 Only about a third of the scientific literature on CDR has a geographical
focus, highlighting a potential lack of information tailored to specific local
or regional contexts, particularly Africa and South America.

* Based on first author affiliation, 32% of scientific studies on CDR are
written in China, 9% in the United States and 4% in Australia. This Is
particularly driven by a strong dominance of biochar research in China.



Research Landscape: Key Findings (cont)

* The scientific literature on CDR i1s mainly published in natural science (49%),
agricultural science (25%) and engineering and technology journals (23%).
Only 3% is published in social science journals, and a handful in the
humanities.

* Policymakers’ focus to date has been on conventional CDR on land, through
forestry and agriculture. However, attention on BECCS, Direct Air CCS and
other novel CDR methods (not identified) Is increasing.

» Conclusion: Afforestation/forestation along with, perhaps, BECCS are
currently considered of utmost importance in achieving climate mitigation
targets!



Capacity of operational carbon capture and storage (CCS) facilities worldwide
as of 2022, by country (million metric tons per year)

IEA data for 2022:
Canadian emissions: 511.6 Mt CO2/yr (0.7%)
US emissions: 4,549.6 Mt CO2/yr (0.5%)

Global CO: capture capacity worldwide 2022. by country

CO: capture capacity in million metric tons per year
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Preliminaries

“Today’s IPCC Working Group 1 report is a code red for humanity. The alarm bells are
deafening, and the evidence is irrefutable: greenhouse-gas emissions from fossil-fuel burning
and deforestation are choking our planet and putting billions of people at immediate risk”
(United Nations 2021).

Simon Stiell, Executive Secretary of the United Nations Framework Convention on Climate
Change said the next two years are "essential in saving our planet® (Reuters, April 10, 2024)

“The United Nations (UN) Intergovernmental panel on Climate Change (IPCC) has recently
published a report (abbreviated as SR15) which concludes that humankind has a mere 12 years
left” to address climate change (Rhodes et al. 2019, Science Progress 102(1):73-87).

Implication: Terrestrial carbon sequestration is too late!?!



« Terrestrial carbon fluxes are a problem when it comes to carbon dioxide removals (CDRSs)
« Timing of future carbon fluxes/values is an important issue in deciding whether there is any
value to the temporary storage of carbon

« Economists prefer use of social rate of time preference (Ramsey formula), which is low to account
for future generations. But it favors delay of carbon uptake

« Weighting future CDRs much less than current ones (because climate mitigation is urgent) implies
high rate used to discount future carbon

 Social rate of time preference and rate used to discount carbon values are in tension as they deal
with two different issues.

* Open to corruption

« Counting emission reductions from activities that prevent GHG emissions are particularly
problematic (e.g., deforestation, prevention of tillage operations)

 Countries are less interested in preventing climate change, but are interested in virtue
signaling—*“we have done our part, now do yours”



2. Carbon Offset Markets

» Carbon offset: a reduction in CO, emissions, or an equivalent removal of CO, from the
atmosphere, that Is realized outside a compliance market and can be used to counterbalance
greenhouse gas emissions from a capped entity. Referred to as carbon dioxide removals

(CDR)

e Martin Weitzman’s “Prices vs Quantities” (tax vs cap-and-trade) favours a carbon tax over
carbon trading simply because the costs of achieving a cap are unknown.

« BUT countries do everything against the recommendations of economists, Imposing a tax,
Implementing a carbon market, and mandating a variety of programs (e.g., EV targets,

forcing forest companies to remove and use roadside waste, restrict fertilizer use) that
should be incentivized by the price on carbon

« Canada has 147 programs in place, including the tax
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Carbon offsets (i) reduce emitters’ costs of complying with emission
reduction targets, (i) buy time to develop & adopt emission-reducing
technologies, but (ii1) reduce incentives to invest in such technologies
while (iv) increasing uncertainty and corruption.

van Kooten and de Vries (2014); van Kooten et al. (2015)



Problems with offsets

1. Additionality: criterion dictating that an emission source can only obtain carbon
offsets for emission reductions above and beyond what would occur in the absence

of carbon offset incentives

2. Leakage: the extent to which a climate mitigation activity in a certain location
Increases CO, emissions elsewhere.

3. Double dipping: selling multiple environmental services, such as carbon offsets, in
more than one market (e.g., Annex B country invests in tree planting project in
China, with both countries claiming carbon reduction benefits)

4. Plethora of instruments: instruments available to Annex B countries (lack of
commensurability — duration problem):

1. reduce domestic CO, emissions,
2. purchase allowances from other Annex B countries (whose emissions are below target),

3. sequester carbon in domestic biological sinks,
4. purchase certified emission reduction credits (CERs) via CDM,

5. earn reduction units (ERUs = CERS) in economies in transition via Joint Implementation
mechanism.
CERs could also be earned for CO, removed from the atmosphere by afforestation/reforestation



Problems (cont)

5. Duration: the length of time that an activity to mitigate climate
change keeps CO, out of the atmosphere. For removal projects,
this is the time between CO, uptake and eventual release; it is
also the time between emissions reduction and the eventual
release of carbon in the ‘saved’ fossil fuels, although this period
IS often taken to be Infinite. vanKooten etal. 2021); van Kooten (2023, 2024)

6. Transaction costs and governance: costs of measuring,
monitoring, enforcing and negotiating trades, and how trades are
made van Kooten (2017)



3. Climate Change and Forest Carbon Offsets

 Forest carbon offsets plagued with measurement problems (leading
to corruption)
* Arbitrary cutoffs for determining carbon uptake (sequestration)
* Issue of temporary (5-year) offset permits vs long-term offsets

tCER—temporary certified emission reduction (annual rental)

|ICER—Iong-term but not permanent (5-yr)



Kyoto Process Solution to Incommensurability Problem:
Defining ICERs and tCERs from Forestry Activities
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What affects measurement of forest carbon
offsets, or carbon dioxide removal (CDR)?

1. Weighting of carbon dioxide as to when the carbon flux occurs (i.e.,
different social and carbon discount factors)
« Important policy variable
« Recognizes whether addressing climate change Is urgent
2. Decay of post-harvest wood product and ecosystem carbon pools.
« Enables calculation of CDR over all time
« Determined by physical attributes of carbon pools
3. Other factors:
« Type of tree species and variety (e.g., genetically modified)
 Location and quality of the forestland
« Management (e.g., forest rotation age, harvest method)
 Natural disturbance (viz., wildfire, MPB)




* Glven planting, one cannot ignore the impact of
harvests and alternatives:

 Never harvest: ‘Conservation’

« Store carbon in products and, when wood substitutes for
concrete/steel in construction, count emissions avoided
because these materials are not produced

 Use biomass for fuel (increasingly popular) — see next slide
* How urgent is need to stop global warming?

* Low urgency — 0% discount rate on carbon values
* Great urgency — high discount rate on carbon
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Weighting Carbon as to When 1t Occurs:

Cumulative carbon (tCO,): fossil fuel vs biomass sources for generating electricity
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Carbon neutrality? If there is no urgency to address climate change,
future and current emissions/uptake are identical. If there is urgency,
current emissions/uptake weigh more heavily than future ones.
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Lodgepole pine (pinus contorta)
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4. Rotation Ages and Carbon Offsets

Two approaches used to address economic issues of commercial
plus CDR benefits of forestry activities

1. Timber management models that include commercial timber
values and carbon prices

* E.g., Darkwoods analysis demonstrates the importance of a baseline
BAU (Forest Science April 2015)

2. Forest rotation models are generally preferred by economists



Type of Rotation Formula to Determine Rotation Age
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v(t) = volume of timber at time t (m?); x(t) = non-timber (environmental)
benefits at time t; P = price of timber ($/m?3); P, = price of carbon ($/tCO,);
a = tCO,/m3; § = monetary rate of discount



_ « Formula for calculating rotation age for variety
Carbon rotation of parameters indicated on previous slide
(modified Hartman rotation to include carbon)
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p = pickling factor (0<p<1);
y = weight on timing of carbon fluxes (rate of discount on physical carbon);
d = decay rate of post-harvest carbon pools.



Various parameterizations

1. If P, =0, one gets the Faustmann rotation.

2. If y=0 and d=0, then no decay of post-harvest wood products, no weighting of
timing of carbon fluxes.

3. If y>0and d>0, A = afP. (1 - %). This is the case in equation (1).

4. 1fy=0 and d>0, A = apP. (1 - %) = afP.(1-1) = 0.

5. If y>0and d=0, A = af3P..

6. If the carbon price, P, Increases faster than y>0, then there iIs incentive to delay
tree planting which could lead to an infinite rotation age.
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Natural Disturbance: Wildfire

Canada’s intended nationally determined contribution (INDC) for efforts to meet Paris targets: only ‘anthropogenic
emissions and removals’ are considered, not carbon fluxes associated with natural disturbances.

Studies have included natural disturbance to determine rotation age: van Kooten, Johnston and Mokhtarzadeh (J of For
Econ 2019); Ekholm (Forest Policy and Economics 2020); Siebel-McKenna, Johnston & van Kooten (Spatial Econ
Analysis 2020) .

General approach: stochastic dynamic programming
Conclusions from van Kooten et al. (2019)

» Wildfire risk delays harvests as carbon prices rise, with less carbon stored in harvested wood products and more in the
forest ecosystem

* |Increased risk of natural disturbance causes the landowner to harvest sooner.

 Increased prevalence and severity of natural disturbance somewhat offsets the lengthening of rotation age that occurs when carbon is
priced.

 With disturbance, the total amount of carbon sequestered falls significantly, but some of this can be recovered through
proactive planting of genetically modified (GM) stems that are more productive and less susceptible to disturbance



Natural Disturbance: Wildfire (cont)

Conclusions from Siebel-McKenna et al. (2020)

Ignoring natural disturbances results in overestimation of carbon sequestration potential & underestimation of its
costs. Could influence managers to forgo managing forests for carbon benefits at all.

Ignoring natural disturbance risk in the establishment of baselines for carbon accounting may lead to situations in
which forest managers find it difficult to generate carbon offsets, because carbon prices penalize emissions related
to the harvesting and processing of HWPs, which, in turn, leads to reduced carbon-storage capabilities.

As carbon prices increase, the amount of carbon sequestered in living and dead biomass (including soil) increases
but plateaus at around a carbon price of $100/tCO.,.

Carbon pricing leads to less carbon stored in post-harvest wood products due to penalty of associated harvesting
and processing.

Carbon offset scheme intending to encourage carbon capture must carefully consider these opposing forces, even
If the baseline considers the risk of natural disturbance.



Carbon Uptake Conclusions

Tension exists between the social rate of time preference and the rate used to
discount carbon values.

A low discount rate that incentivizes early adoption of climate mitigation
strategies leads to delayed afforestation, as does as rising carbon price.

Choice of a growth function impacts rotation age and thus creation of carbon
offset credits.

Decay of post-harvest wood product sinks and carbon discounting affect the
optimal rotation age and carbon offset credits that can be claimed.

Despite an externality-correcting carbon tax, social and private forest rotation age
continue to diverge.

It may be unwise to lean heavily on forest carbon offsets for mitigating climate
change.



5. Politics and corruption

* Principal-agent problem of forest carbon offsets
 There is a cost of using forest carbon offset credits in lieu of CO, emission reductions

* In addition to transaction costs, poor governance iIs an obstacle to creation of carbon
offsets

« There are many principal-agent layers between the supplier and demander of forest
offsets

 Purchasers of forest carbon offsets are often ignorant of the actual impact on climate
mitigation

 Measurement



Principal-Agent Relationships and the Contracting of Carbon Offset Credits

Descending order
of control over the
effectiveness of
CO; offsets

Principal Agent Description/Comment
Agent maximizes immediate net
Land user / returns to land use; principal
Landowner tenant / peasant  maximizes present value of net
(‘on-the-ground”) returns in long run. Contract could
be informal or non-existent
Landowner and land user may be
Aggregator / Landowner / the same agent (as in developed
countries). Some form of contract
Contractor farmer

required to present for
certification.

Certification Process:
Certifier / ‘Gatekeeper’

Certifier and aggregator could be
linked if governance structure is
unable to ‘ring a fence’ around
different aspects of a firm

Seller or Adareqator Seller/contractor and aggregator
Contractor Jarey could be identical
When purchasing offset credits,
Buyer Seller buyer trusts credits are legitimate

and truly reduce atmospheric COo,
whether true or not




Evaluation of 50 Carbon Offset Projects

Likely junk junk information
50 39

8 3
Carbon offsets (Mt CO,) (343) (267) (61) (15)
Forestry & land use 23 20
Renewable energy 16 15
Chemical processes/industrial
manufacturing
Household devices
Waste disposal

Overall
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Source: https://www.thequardian.com/environment/2023/sep/19/do-carbon-credit-reduce-emissions-greenhouse-gases?CMP=Share AndroidApp Other



https://www.theguardian.com/environment/2023/sep/19/do-carbon-credit-reduce-emissions-greenhouse-gases?CMP=Share_AndroidApp_Other

Why projects were classified as likely or potentially junk

Not additional
Exaggerated claims

Inflated baseline

Not permanent

Leakage

Guardian graphic. Source: Guardian/Corporate Accountability analysis.

Source: https://www.thequardian.com/environment/2023/sep/19/do-carbon-credit-reduce-emissions-greenhouse-gases?CMP=Share AndroidApp Other



https://www.theguardian.com/environment/2023/sep/19/do-carbon-credit-reduce-emissions-greenhouse-gases?CMP=Share_AndroidApp_Other

» There is some ability to employ forestry activities to create
carbon credits that offset emissions from fossil fuel
burning.

- « BUT society should recognize the limits to forestry
ConCI usion activities in mitigating climate change; after all, there are

other important nonmarket values of forests that should not
be overlooked in pursuit of climate nirvana.
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Forest Carbon Offsets Revisited: Shedding Light on
Darkwoods

Gerrit Cornelis van Kooten, Timethy N. Bogle, and Frans P. de Vries

This poper investigates the viability of corbon offset credits created through forest conservafion and preservation. A detoiled forest monagement model based on o cose
study of o forest estute in southeassern British Columbio, owned by The Nature Conservancy of Canoda (WCC) s wsed to demonsirate the challenging nature of estimating
forest corbon offsess. For example, the MCC manogement plan creates substantiol carbon offset credits becowse the counterfoctual i that of a private forest liquidator,
bt when sustainable manogement of the site is assumed, the commercial operator would sequester much more carbon than under the NCC plan. The brooder messoge
is that the creation of carbon offsets is highly sensifive 1o ex ante assumptions and whether physicol carban i discounted. We demonsirate that mere carbon gets stored
in wiod producs os the discount rate on carbon rises (oddressing climate change is more urgent). A high discount rate on corbon fivors grenter harvests and processing
of biomass into products, while @ low rote favors reduced horvest infensity. Further, since corbon medits sorned by protecing forests moy find their way omte world

corbon markets, they lower the wsts of emitfing (0, while contributing little fo mifigating climate chonge.
Keywords: forest management, corbon fhux, discounting physical carben, dimate change

n the face of global warming, dimate mitigation strategies that
Icnhancc carbon sequestration in ecosystems are becoming in-

creasingly important. It makes intuitive sense to take account of
carbon offscts gcnclatcd hj' projects that promote tres gmwth or
otherwise cause more carbon to be stored in ccosystems, including
those that enhance soil organic carbon (IPCC 2000). Five categorics
of forest offset projects can be identified (Malmsheimer etal. 2011):
(1) afforestation {planting trees where none existed previouslyl); (2)
reforestation (regenerating previously forested sites); (3) forest
management (management of existing forests to achieve specific
carbon upt:ﬂ(c objectives while maintaining forest pmductiviry]; 4
forcst conscrvation (managing existing forests to prevent their con-
version to other uses); and (5) forest preservation (managing forests
to prevent their deterioration or degradation). Although forest con-
servation and preservation are currently not eligible for emission
reduction (or carbon) offsets, concerns about rmpical deforestation
have led many to commend their use in developing countries as a
toal for addressing plobal warming (Kaimowitz 2008, Buttoud
2012). Indeed, forest conservation and preservation projects are
increasingly considered alternative means for carning certified emis-
sion reduction (CER) credits under the rubric of reducing emissions

from deforestation and forest degradation, or REDD (Law et al.
2012).

In this paper, we contribute to the emerging literature on these
forms of forest offset credits by addressing the following question:
What are the implications for reducing atmospheric CO, if carbon
offsets from forest protection projects are used in lieu of emissions
reduction? To answer this question, we examine the role of a partic-
ular forest prescrvation projoct in creating carbon offsct credits.
focusing on the procedures used to determine the extent of carbon
offsct creation (including identification of counterfactuals) and,
more generally, the challenges of measuring the corresponding im-
pact on carbon sequestration in forcsts.

Back

It may be helpful to recall that the European Union eriginally
chstr:d the use of carbon scqucstmtiun as 2 means for countries to
meet their greenhouse gas emission reduction targets under the
Kyoto Protocol of the United MNations' Framework Convention on
Climate Ch:lngr:{UN FCCC). Yet, after the United States withdrew
from the Kyoto negotiations following the Sixth Conference of the
Parties (COP6) to the UN FCCC in The Hague, the Kyoto signa-
tories agreed at CODT in Marrakech to permit carbon uptake from
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This article uses metric units; the applicable conversion factors are: meters (m): 1 m = 3.3 fi; cubic meters (m™): 1 m” = 35.3 fi; kilometers (km): 1 km =

0.6 mi; hectares (ha): 1 ha = 247 ac.
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