

THE SPATIAL

FOREST PRODUCT

DEMAND IN THE US

Zoey Roberts and Greg Latta

Policy Analysis Group, University of Idaho

Presented at: 2024 Western Forest Economists Annual Meeting Victoria, BC May 23, 2024

University of Idaho

College of Natural Resources

DISAGGREGATING FOREST DEMAND

Background

- Past approaches
- I Data
- I Methods
- Preliminary results
- I Next steps

BACKGROUND

Results will be the foundation for exogenous demand projections

Projections are used by forest sector models (e.g. LURA, FASOM)

I Models can more accurately distribute supply

Core downscaling algorithms

(van Vuren et al., 2006; Ha & Teng, 2013; Gütschow et al., 2020)

<u>Linear</u>

Convergence

External-input based

Defer to a larger unit's growth rate

Assume subunits converge at a larger unit's average Uses a subunit's position within a larger unit of one variable to define a second variable relationship

PAST APPROACHES

I

Prestemon et al., 2022

"Projections of housing starts require projections of all exogenous variables that explain starts and wood products demands" (Prestemon et al., 2017)

PAST APPROACHES

Prestemon et al., 2022

KEY DIFFERENCE:

Prestemon et al. disaggregate while estimating projections – our goal is to downscale AEO's national projections

starts model	regressive models	projections	level	carbon stored

		Temporal Scale		
		Past	Future	
Geographic Scale	County	Census: Building permits BEA: GDP	?	
	Country	Census: Housing starts BEA: GDP	AEO: GDP, Housing starts	

We need a disaggregated initial consumption/demand

At the Country Level

From FAOStat (1970-2022):

Apparent Consumption =

Production +

Imports

Exports

Break Softwood Lumber demand into two components: one part housing driven, and one part GDP driven

Housing component of demand

• Things we know

- Housing starts per year
- Average square foot per house

Things we assume

- Softwood lumber bf (sorry Canadians) per square foot of housing
- Softwood lumber bf per cubic meter

39 mil m³ =1436 (starts/year)*2513(ft2/start)*6.38(bf/ft2)*0.0017(m3/bf)

Housing component of demand

• Things we know

- Housing starts per year
- Average square foot per house

Things we assume

- Softwood lumber bf (sorry Canadians) per square foot of housing
- Softwood lumber bf per cubic meter

The other important number to track here for later is:

39 mil m³ =1436 (starts/year)*2513(ft2/start)*6.38(bf/ft2)*0.0017(m3/bf)

27.3 m³/start =2513(ft2/start)*6.38(bf/ft2)*0.0017(m3/bf)

I Non-Housing component of demand

O Things we know

Apparent Consumption from FAOstat (85.2 mil m³ avg 2018-2022)

• Things we assume

- Softwood lumber consumption in housing (39.0 mil m³ avg 2018-2022)
- The rest is a function of general economic output (GDP avg 2018-2022)
 - We need an estimate of softwood lumber demand per unit of GDP

2.4 $m^3/\$1000GDP$ =(85.2 (mil m^3) – 39.0 (mil m^3)) / 19437 (\$GDP)

We need a disaggregated initial consumption/demand

At the Country Level

From FAOStat (1970-2022):

Apparent Consumption = Production

Imports

Exports

driven, and demand into two part housing driven GDP mber part components: on **Break Softwood** one

At the County Level

From FAOStat (1970-2022):

BPS Permits x 27.3 m3 per start + BEA GDP x 2.4 m3 per \$1000GDP

METHODS – **SOFTWOOD LUMBER EXAMPLE** What does this look like?

METHODS – MOVING FORWARD

We have national-level Housing Starts and GDP

• From the Annual Energy Outlook (through 2050)

Table 18—U.S. demand elasticities for USFPM end products

Commodity	Price	GDP	Housing starts	Advertising spending in print media	Advertising spending in electronic media
Softwood (SW) lumber	-0.14	0.39	0.49	_	_
Hardwood (HW) lumber	-0.10	0.22	_	_	_
SW veneer/plywood	-0.65	0.55	0.69	_	_
HW veneer/plywood	-0.29	0.41	_	_	_
Oriented strandboard (OSB)	-0.65	0.55	0.69	_	_
Industrial particleboard	-0.29	0.54		_	_
Fuel feedstock	-0.50	Х		—	_
Other industrial roundwood	-0.05	-0.58		—	_
Fiberboard	-0.46	0.35	_	—	
Newsprint	-0.68	0.77		1.35	-1.00
Printing and writing paper	-0.42	0.60	_	1.00	-0.55
Other paper and board	-0.23	0.43		—	_

U.S. Forest Products Module

A Technical Document Supporting the Forest Service 2010 RPA Assessment

Peter J. Ince, Research Forester, Forest Products Laboratory Andrew D. Kramp, Associate IP Consultant, University of Wisconsin-Madison Kenneth E. Skog, Supervisory Research Forester, Forest Products Laboratory Henry N. Spelter, Economist (ret.), Forest Products Laboratory David N. Wear, Supervisory Research Forester, Southern Research Station

INow the issue is the linearity of the projection

• Basically - we are holding the current county proportions constant

2022 Smaller numbers ~88 mil m³ **2050** Bigger numbers ~96 mil m³

NEXT STEPS – AND A PLEA FOR FEEDBACK

Other approaches we may take next...

- We are toying with method 2 (Convergence)
 - Using either absolute or percentage changes and convergence

or maybe a modified method 2 (Econometric then proportioned to national total)

Goal = simple and easily updated

I Thoughts?

Zoey Roberts Doctoral Student zroberts@uidaho.edu

Greg Latta Director, Policy Analysis Group <u>glatta@uidaho.edu</u>

e-newsletter and reports http://www.uidaho.edu/cnr/pag

University of Idaho

College of Natural Resources