Examining Information Sharing Dynamics through Network Analysis in the Western Hardwood Manufacturing Sector

Victoria Diederichs, RPF

Advised by Mindy Crandall & Eric Hansen

Departments of Forest Engineering, Resources, & Management and Wood Science & Engineering

2025 Western Forest Economists Meeting Seattle, WA

Outline

- 1. Western Hardwood Manufacturing Sector
- 2. Research Questions
- 3. Method Social Network Analysis
- 4. Results
 - 1. Demographic
 - 2. Descriptive
 - 3. Model
- 5. Takeaways

The Hardwoods

Oregon white oak

Quercus garryana

Madrone

Arbutus menziesii

Photos: Washington Native Plant Society, Wikipedia, Travel Oregon, St Kitts Villa, Green Home Solutions, Maverick Sawmill Services

Bigleaf maple

Acer macrophyllum

Research Questions

Where do hardwood manufacturers source information?

What processes & conditions enable information transfer in the hardwood sector?

(Tsai, 2001; Van Wijk et al., 2008; Lee et al. 2021)

Methods

Social Network Analysis

(Scott & Carrington, 2011)

- Analyzing organization of actors in a social system
- Assumes actors make meaningful decisions based on context
- Represents actors as nodes and relationships as edges

Exponential Random Graph Model

- Simulate networks based on basic structural features of the observed network
- Estimates the odds that a given characteristic will affect the formation of a relationship
- Do not tolerate missing data

(Harris, 2014)

Data Collection

- Survey instrument developed based on results of earlier work
- Collected data on information sharing relationships
 - In both directions
 - Split into "technical" and "market" information
 - Each relationship has a "frequency" and "importance to the respondent" score
- 34 samples collected thus far (74% of known companies)

Degree centrality

(Marsden, 2002)

Geographic distance

(McPherson et al., 2001)

(Obermayer and Toth, 2020; Skerlavaj et al. 2010)

Results

The Wood Database

Demographics

Demographics

Hardwood Companies 18 35 16 30 14 25 12 Frequency 20 10 15 8 10 6 5 4 0 Academic, Non-Profit, & Government 2 Wood products Western hardwoods Wood products . Western species Wood Products Hardwoods Nood Products - Softwoods Wood Products - All species Machinen & Equipment other 0 Westernhardwoods Westernspecies Allspecies Hardwoods Company Type

All Companies

Species Processed

Market Information

- Academic, Non-profit, & Government
- Hardwood Companies
- Industry Association
- Machinery & Equipment
- Other
- Wood Products Companies

Darker edge = more important Thicker edge = more frequent

Technical Information

- Academic, Non-profit, & Government
- Hardwood Companies
- Industry Association
- Machinery & Equipment
- Other
- Wood Products Companies

Darker edge = more important Thicker edge = more frequent

Market Hardwood Only

- Western hardwood company (respondent)
-) Western hardwood company (non-respondent)

Darker edge = more important Thicker edge = more frequent Larger node = larger company

Technical Hardwood Only

- Western hardwood company (respondent)
-) Western hardwood company (non-respondent)

Darker edge = more important Thicker edge = more frequent Larger node = larger company

Dyad Census

Configuration	Market		Technical		
	Full	Hardwood		Hardwood	
	Network	Companies	Full Network	Companies	
Mutual	75 (0.48%)	24 (2.32%)	76 (0.49%)	27 (2.61%)	
Asymmetrical	36 (0.23%)	8 (0.77%)	94 (0.6%)	19 (1.84%)	
	15465	1003	15406	989 (95.56%)	
Null	(99.29%)	(96.91%)	(98.91%)		
Total	15576	1035	15576	1035	

	Market		Technical	
EKGIVI Kesuits	Odds	95% Conf. Int.	Odds	95% Conf. Int.
	(Std. Error)		(Std. Error)	
Edges	0 (4.95)	[0, 0.01]	0 (3.94)	[0, 0.01]
Node Covariate (In) – Ego Diversity by Type	0.7 (1.75)	[0.23, 2.15]	0.73 (1.5)	[0.32, 1.65]
Node Covariate (Out) - Ego Diversity by Type				
	2.27 (1.7)	[0.79, 6.56]	4.19 (1.49)	[1.9, 9.26]
Node Covariate (In) - Ego Diversity by Association				
	4.31 (3.02)	[0.47, 39.39]	8.84 (2.4)	[1.53, 51]
Node Covariate (Out) - Ego Diversity by				
Association	0.72 (2.84)	[0.09, 5.78]	0.65 (2.37)	[0.11, 3.65]
Node Match - Size Class 1	1.3 (1.4)	[0.66, 2.56]	1.08 (1.33)	[0.61, 1.9]
Node Match - Any Other Size Class	2.55 (1.46)	[1.2, 5.41]	1.9 (1.39)	[0.98, 3.67]
Node Match - Association Membership	1.03 (1.28)	[0.63, 1.69]	0.88 (1.26)	[0.56, 1.4]
Edge Covariate - Distance Class	0.63 (1.19)	[0.44, 0.89]	0.71 (1.16)	[0.53, 0.95]
Reciprocity		[367.2,		[104.02,
	4124.42 (3.35)	46326.06]	532.01 (2.26)	2720.88]
Node Covariate (In) - People Inside Company	1.42 (1.2)	[0.99, 2.04]	1.16 (1.14)	[0.89, 1.51]
Node Covariate (In) - People Outside Company	0.94 (1.26)	[0.6, 1.49]	0.93 (1.2)	[0.65, 1.34]
Node Covariate (In) - News and Social Media	1.3 (1.15)	[0.99, 1.72]	1.32 (1.12)	[1.04, 1.66]
Node Covariate (In) - Reliance on Publications	0.65 (1.2)	[0.45, 0.93]	0.67 (1.18)	[0.48, 0.93]
Node Covariate (In) - Reliance on Industry				
Associations	1.31 (1.2)	[0.91, 1.88]	1.2 (1.18)	[0.86, 1.68]

Market Hardwood Only

- Edge density (-)
- Geographic distance (-)
- Importance of publications (-)
- Homophily among larger companies (+)
- Reciprocity (+++++)

Technical Hardwood Only

- Edge density (-)
- Geographic distance (-)
- Importance of publications (-)
- Ego diversity by type (+)
- Ego diversity by association (+)
- Homophily among larger companies (+)
- Reciprocity (+++)

Key Takeaways

- Reciprocity had the largest effect
- Market information
 - Trust
 - Motivation
- Technical information
 - Training and mentorship
- Limitations

Thank you

victoria.diederichs@oregonstate.edu

References

- Carrington, P. J., Scott, J., & Wasserman, S. (2005). *Models and Methods in Social Network Analysis*. Cambridge University Press.
- Diederichs, V., Crandall, M. S., & Hansen, E. (2025). Unique Dynamics and Challenges of the Oregon and Washington Hardwood Manufacturing Sector. *Journal of Forestry*. https://doi.org/10.1007/s44392-025-00018-z
- Harris, J. K. (2014). An introduction to exponential random graph modeling. SAGE.
- Lee, J. Y.-H., Saunders, C., Panteli, N., & Wang, T. (2021). Managing information sharing: Interorganizational communication in collaborations with competitors. *Information and Organization*, *31*(2), 100354. https://doi.org/10.1016/j.infoandorg.2021.100354
- Lee, Y., Lee, I. W., & Feiock, R. C. (2012). Interorganizational Collaboration Networks in Economic Development Policy: An Exponential Random Graph Model Analysis* Interorganizational Collaboration Networks in Economic Development Policy: An Exponential Random Graph Model Analysis. *Policy Studies Journal*, 40(3), 547–573. https://doi.org/10.1111/j.1541-0072.2012.00464.x
- Marsden, P. V. (2002). Egocentric and sociocentric measures of network centrality. Social Networks, 24(4), 407–422. https://doi.org/10.1016/S0378-8733(02)00016-3
- McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a Feather: Homophily in Social Networks. Annual Review of Sociology, 27(Volume 27, 2001), 415–444. https://doi.org/10.1146/annurev.soc.27.1.415
- Obermayer, N., & Toth, V. E. (2020). Organizational dynamics: Exploring the factors affecting knowledge sharing behavior. *Kybernetes*, 49(1), 165–181. https://doi.org/10.1108/K-04-2019-0300
- Scott, J., & Carrington, P. J. (2011). The SAGE handbook of social network analysis. SAGE.
- Škerlavaj, M., Dimovski, V., & Desouza, K. C. (2010). Patterns and Structures of Intra-organizational Learning Networks within a Knowledge-Intensive Organization. *Journal of Information Technology*, 25(2), 189–204. https://doi.org/10.1057/jit.2010.3
- Tsai, W. (2001). Knowledge Transfer in Intraorganizational Networks: Effects of Network Position and Absorptive Capacity on Business Unit Innovation and Performance. *The Academy of Management Journal*, 44(5), 996–1004. https://doi.org/10.2307/3069443
- Van Wijk, R., Jansen, J. J. P., & Lyles, M. A. (2008). Inter- and Intra-Organizational Knowledge Transfer: A Meta-Analytic Review and Assessment of its Antecedents and Consequences. *Journal of Management Studies*, 45(4), 830–853. https://doi.org/10.1111/j.1467-6486.2008.00771.x