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HWP MITIGATION CONSIDERATIONS

Understanding Harvested Wood Products
You first have to know what you are looking at

Carbon Storage in Harvested Wood Products
And how it is modeled

Strategies for Maximizing Carbon Benefits
This is the actual modeling part

Challenges and Considerations
And the part where we reflect on the modeling

Conclusion



UNDERSTANDING HARVESTED WOOD PRODUCTS

Harvested wood products encompass a wide
range of wood-based materials, including lumber,
plywood, paper, and furniture, that are derived
from harvested trees. ChatGPT off to a good start

Unlike standing forests, which continue to
sequester carbon for a finite period, HWPs retain
carbon for longer durations, thereby extending the
carbon storage lifespan and nmitigiating-cairbgre not
emissions.
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CARBON STORAGE IN HARVESTED WOOD PRODUCTS

The carbon stored in harvested wood products
originates from atmospheric carbon dioxide
absorbed by trees during photosynthesis.

When harvested, this carbon is captured within
wood-based products, where it can remain stored
for years, decades, or even centuries, depending on
the product's lifespan and disposal practices.



ACCOUNTING FOR CARBON IN HWP
Pretty much everybody uses the same sort of

approach

End uses emit
to landfill or
atmosphere

over time

Forest
Products

Logs
harvested
from Forest

Forest
Products

A.ﬂ
-

Skog, K.E. 2008. Sequestration of carbon in harvested wood products for the United States. Forest Products Journal. 58(6):56-72
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WHAT DO THESE FLUXES sroc cuances ivow LOOK LIKE?

Table 6-8: Net CO: Flux from Forest Ecosystem Pools in Forest Land Remaining Forest Land

and Harvested Wood Pools (MMT CO: Eq.)

Carbon Pool 1990 2005 2017 2018 2019 2020 _—2821_

Forest Ecosystem (697.7) (608.2) (610.4) (610.5) (559.8) (610.8) (592.5)
Aboveground
Biomass (499.1) (443.8) (425.9) (428.0) (410.8) (419.0)  (409.1)
Belowground
Biomass (101.8) (89.8) (84.5) (85.1) (81.6) (83.1) (81.1)
Dead Wood (100.8) (97.9) (100.0) (102.7) (98.2) (102.3) (101.1)
Litter 0.9 22.5 (2.0) 1.6 30.4 (1.9) 1.9
Soil (Mineral) 3.2 0.5 (0.1) 0.6 0.7 (5.4) (4.0)
Soil (Organic) (0.8) (0.4) 1.4 2.3 (1.1) 0.1 0.1
Drained Organic
Soil? 0.8 0.8 0.8 0.8 0.8 0.8

Harvested Wood (123.8) (106.0) (100.3) (94.0) (89.6) (96.6)
Products in Use (54.8) (42.6) (34.9) (28.9) (25.1) (32.0) 8
SWDS (69.0) (63.4) (65.3) (65.1) (64.5) (64.6) (65.1)
Total Net Flux (821.4) (714.2) (710.7) (704.4) (649.3) (707.4) (695.4)

3aThese estimates include C stock changes from drained organic soils from both Forest Land Remaining Forest
Land and Land Converted to Forest Land. See the section below on CO3, CHs, and N20 Emissions from Drained
Organic Soils for the methodology used to estimate the CO; emissions from drained organic soils. Also, Table
6-20 and 6-21 for non-CO; emissions from drainage of organic soils from bath Forest Land Remaining Forest

Land and Land Converted to Forest Land.

Notes: Forest ecosystem C stock changes do not include forest stocks in U.S. Territories because managed

USDA
@ Uvtes S1ates Department of Agrasture
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Table 6-8: Net CO: Flux from Forest Ecosystem Pools in Forest Land Remaining Forest Land

WHAT DO and Harvested Wood Pools (MMT CO:z Eq.)

Carbon Pool 1990 2005 2017 2018 2019 2020 2021

T H E S E F L U X E S Forest Ecosystem (697.7) (608.2) (610.4) (610.5) (559.8) (610.8) (592.5)
Aboveground

Biomass (499.1) (443.8) (425.9) (428.0) (410.8) (419.0) (409.1)

(STOCK CHANGES | KNOW) Belowground

f, Biomass (101.8) (89.8) (84.5) (85.1) (81.6) (83.1) (81.1)
LOOK LIKE 4 Dead Wood (100.8) (97.9) (100.0)  (102.7) (98.2)  (102.3)  (101.1)

Litter 0.9 22.5 (2.0) 1.6 30.4 (1.9) 1.9
Soil (Mineral) 3.2 a.5 (0.1) 0.6 Q.7 (5.4) (4.0)
Soil (Organic) (0.8) (0.4) 1.4 2.3 (1.1) 0.1 0.1
Drained Organic
Soil? 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Harvested Wood (123.8) (106.0) (100.3) (94.0) (89.6) (96.6)  (102.8)
Products in Use (54.8) (42.6) (34.9) (28.9) (25.1) (32.0) (37.8)
SWDS (69.0) (63.4) (65.3) (65.1) (64.5) (64.6) (65.1)

| Total NetFlt Table 6-8: Net CO: Flux from Forest Ecosystem Pools in Forest Land Remaining Forest Land
These estima 4 hd Harvested Wood Pools (MMT CO; Eq.)

Land and Lan
Carbon Pool 1990 I 2005 I 2018 2019 2020 2021 2022

QOrganic Soils
6-20 and 6-2:

_ Loy L Forest Ecosystem (851.0) | (770.0) | (779.6) (726.2) (765.2) (749.5) (694.3)
T st M T e pocystem Pools in Forest £ Notoc: Foren Aboveground Biomass (600.9) |  (550.8) |  (536.7) (516.3) (522.8) (513.0) (491.7)
' Belowground Biomass (116.8) I (107.5) I (105.4) (102.3) (102.2) (100.9) (96.9)
Carbon Pool 1990 2005 2015 2016 2017 2018 2019
ForestEcosvsteml (663.8) (555.5) (582.7) (629.5) (564.0) (599.8) (583.3) Dead WOOd (1320) I (1312) I (138.0) (1334) (136.2) (1353) (131_4)
Aboveground Biomass  (456.4) (401.3) (414.2)  (421.3) (395.1) (402.4) (3%94.0)
Belowground Biomass ~ (103.7) (92.0) (92.6)  (95.0)  (89.2)  (90.9)  (89.2) Litter (2.4) I 20.5 I (1.5) 26.5 (3.4) (0.1) 26.4
Dead Wood (97.3) (93.5) (98.7) (105.1) (87.1) (101.7) (99.3) . .
Lieer 1) 2 05 (a2 02 @3 o Soil (Mineral) 20 | (0.8) | 1.3 (1.3) (1.3) (0.9) (1.2)
ol Orgame) ool ool &3 D G% % Soil (Organic) e @o| (01 (0.1) (0.1) (0.1) (0.1)
Drained Organicsoll® 03 03 o8 08  os 08 03 Drained Organic Soil® 0.8 | 0.8 | 0.8 0.8 0.8 0.8 0.8
Harvested Wood (123.8) (106.0) (88.7) (92.4) (95.7) (98.8) (108.5)
Products n Use 548 | 428 (248 (78 (03 (315 (2  Harvested Wood (123.8) | (106.0) |  (93.9) (86.9) (96.8) (94.7) (92.8)
SWDS (69.0) (63.4) (64.1) (64.6) (65.5) (67.2) (69.3) .
Total Net Flux (787.6) (661.5) (671.4) (721.9) (659.7) (698.6)  (691.8) Products in Use (54.8) I (42.6) I (28.8) (22.6) (32.3) (30.4) (28.8)
vt it for 0.8 Tomntonn ot ffi:ﬁﬁffn'ﬂi';‘i’i . 2?&?2?2E':pfie;fa'iilir'fftﬁcﬂf e SWDS (69.0) | (63.4) | (65.1) (64.3) (64.5) (64.3) (63.9)
o e s s et ot 1o s for oo o Sactn e Total Net Flux (974.8) |  (876.0) |  (873.5) (813.2) (862.0) (844.2) (787.0)

Representation of the U.S. Land Base so there are small differences in the forest land area estimates in this
Section and Section 6. See Annex 3.13, Table A-214 for annual differences between the forest area



STRATEGIES FOR MAXIMIZING CARBON BENEFITS

Longer Product Lifespans: Designing and constructing durable wood products with longer
lifespans can maximize carbon storage over time. High-quality wood products, such as engineered wood
and solid wood furniture, can withstand multiple uses and generations, thereby prolonging carbon
sequestration.

Recycling and Reuse: Promoting recycling and reuse of wood-based materials can further extend
their carbon storage lifespan. By salvaging wood from demolished structures or repurposing discarded
furniture, carbon stored in HWPs can be preserved and reincorporated into new products, reducing the
need for virgin materials and mitigating emissions from disposal.

Bioenergy and Biomaterials: Harnessing wood residues and byproducts for bioenergy production
or the manufacturing of biomaterials offers additional opportunities to enhance carbon storage. Utilizing
woody biomass for renewable energy generation displaces fossil fuel emissions, while substituting carbon-
intensive materials with sustainable wood-based alternatives reduces overall carbon footprints.



THE MODELING PART

Longer Product Lifespans: Designing and constructing durable wood products with longer
lifespans can maximize carbon storage over time. High-quality wood products, such as engineered wood
and solid wood furniture, can withstand multiple uses and generations, thereby prolonging carbon
sequestration.

Recycling and Reuse: Promoting recycling and reuse of wood-based materials can further extend
their carbon storage lifespan. By salvaging wood from demolished structures or repurposing discarded
furniture, carbon stored in HWPs can be preserved and reincorporated into new products, reducing the
need for virgin materials and mitigating emissions from disposal.

Bioenergy and Biomaterials: Harnessing wood residues and byproducts for bioenergy production
or the manufacturing of biomaterials offers additional opportunities to enhance carbon storage. Utilizing
woody biomass for renewable energy generation displaces fossil fuel emissions, while substituting carbon-
intensive materials with sustainable wood-based alternatives reduces overall carbon footprints.



system for projecting localized forest CO2 effects of alternative macroeconomic futures. Forest

Latta, G., J. Baker and S. Ohrel. 2018. A land use and resource allocation (LURA) modeling
Policy and Economics 87(2018):35-48.

LURA MODEL BACKGROUND

Balance supply and demand with price sensitive demand
1. Which has a forest land base representation (164k plots)
2. And a forest products market representation (3.4k mills)

LURA Static Supply Forest Ownership Owner Acres Percent
BLM 31,101,654 5% LURA Combined Forest Sector
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Private 427,520,906 63% 126 POI’tS/BOf er
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LURA MODEL BACKGROUND - pynamrc suPPLY

MOVING THE FOREST RESOURCE THROUGH TIME

All Forest Types - Site Class 5

Balance supply and demand with price sensitive
demand

3500 - —

/~ 5 “>z

1. You need to move the resource through time

2. LURA uses yields specific to ecoregion, forest type and
site productivity class

MOVING THE FOREST RESOURCE THROUGH TIME
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2) And move demand through time

LURA MODEL BACKGROUND - bynamic beEmano
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MOVING FOREST PRODUCTS THROUGH TIME

IC SCenarios
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Latta, G., Plantinga, A., and M. Sloggy. 2016. The effects of Internet use on global
demand for paper products. Journal of Forestry 114(4): 433-440.

Pulp Market Demand Projections
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LURA CASCADING WOOD FLOW

Primary
feedstock

Secondary
feedstocks

Sawlogs
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Lumber ) Cross.laminated
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Mill chips
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Sawdust
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Bark

Primary feedstocks used in wood products and energy

Residues generated in wood products production



BIOENERGY APPLICATIONS - croosing siTes

® | ogging residue supply for * Argonne National Laboratory
biorefinery siting GREET model Biopower Module

System boundaries for forest residue-derived biopower pathways
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Martinkus, N., G. Latta, S.A.M Rijkhoff, D. Mueller, S. Hoard, D. Sasatani, F.
Pierobon, and M. Wolcott. 2019. A Multi-Criteria Decision Support Tool for
Biorefinery Siting: Using Economic, Environmental, and Social metrics for a
Refined Siting Analysis. Biomass and Bioenergy. 128(2019):105330



STRATEGIES FOR MAXIMIZING CARBON BENEFITS

Longer Product Lifespans: Designing and constructing durable wood products with longer
lifespans can maximize carbon storage over time. High-quality wood products, such as engineered wood
and solid wood furniture, can withstand multiple uses and generations, thereby prolonging carbon
sequestration.

Recycling and Reuse: Promoting recycling and reuse of wood-based materials can further extend
their carbon storage lifespan. By salvaging wood from demolished structures or repurposing discarded
furniture, carbon stored in HWPs can be preserved and reincorporated into new products, reducing the
need for virgin materials and mitigating emissions from disposal.

Bioenergy and Biomaterials: Harnessing wood residues and byproducts for bioenergy production
or the manufacturing of biomaterials offers additional opportunities to enhance carbon storage. Utilizing
woody biomass for renewable energy generation displaces fossil fuel emissions, while substituting carbon-
intensive materials with sustainable wood-based alternatives reduces overall carbon footprints.

Forest Management Practices: Iimplementing sustainable forest management practices that
prioritize carbon sequestration and wood utilization can amplify the carbon benefits of harvested wood
products. Responsible harvesting techniques, afforestation efforts, and reforestation initiatives contribute
to maintaining and enhancing forest carbon stocks, ensuring a continuous supply of wood resources for



LURA - FASOMGHG INTEGRATION

LURA data was used to generate weighted averages for FASOMGHG Forest
Supply and Demand replacing the existing FASOM forest model and moving the

starting time period to 2015
Land Use and Resource Allocation (LURA) Model | FASOMGHG Forest Data
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FASOM-GHG

(THE FOREST AND AGRICULTURE SECTOR OPTIMIZATION MODEL WITH GREENHOUSE GASES)

Long history modeling carbon markets and forestry

For policy analysis
EPA analysis of S 843 (Clean Air Planning Act of 2003), S 280 (Climate Stewardship and Innovation Act of 2007), S

1766 (Low Carbon Economy Act of 2007), and S 2191 (Lieberman-Warner Climate Security Act of 2007), HR 2454
(American Clean Energy and Security Act of 2009), S 1733 (Clean Energy Jobs and American Power Act)

And journal articles

Adams, R., Adams, D., Callaway, J., Chang, C., and McCarl. B.: 1993, ‘Sequestering Carbon on Agricultural Land: Social Cost and Impacts
on Timber Markets’, Contemporary Policy Issues Xl (1), 76-87.

Adams, D., Alig, R., McCarl, B., Callaway, J., and Winnett. S.: 1999, ‘Minimum Cost Strategies for Sequestering Carbon in Forests’, Land
Economics 75 (3), 360-374.

R Alig, G. Latta, D. Adams, and B. McCarl. 2010. Mitigating Greenhouse Gases: The Importance of Land Base Interactions Among
Forests, Agriculture, and Residential Development in the Face of Changes in Bioenergy and Carbon Prices. Forest Policy and
Economics 12(1): 67-75.

Latta, G., D. Adams, R. Alig and E. White. 2011. Simulated effects of mandatory versus voluntary participation in private forest carbon
offset markets in the United States. Journal of Forest Economics 17(2): 127-141.

Wade, C.M., J.S. Baker, J.P.H. Jones, K.G. Austin, Y. Cai, A.B. de Hernandez, G.S. Latta, S.B. Ohrel, S. Ragnauth, J. Creason and B. McCarl.
2022. Projecting the Impact of Socioeconomic and Policy Factors on Greenhouse Gas Emissions and Carbon Sequestration in US
Forestry and Agriculture. Journal of Forest Economics: Vol. 37: 127-161.



A LITTLE HWP MODELING EXPERIMENT
Usmg the forest side of FASOM .. .mwesectoropmiatonmods

with Greenhouse Gases

Scenarlos

Is HWP a mitigation strategy in and of itself
Only pay for HWP stock changes

What happens when you bring the rest of the US Forest

Sectorin
Pay for all forest sector stock changes

What about a regional HWP-only strategy
Pay for only Lake States HWP stock changes



A LITTLE HWP MODELING EXPERIMENT
Usmg the forest side of FASOM .. .mwesectoropmiatonmods

with Greenhouse Gases

Apply C prlces tO SpQlelC C ﬂuxeS (yes, | know it is a stock change)

This will drive the additional mitigation



IS HWP A MITIGATION STRATEGY IN AND OF ITSELF?
Usmg the forest side of FASOM .. .mwesectoropmiatonmods

with Greenhouse Gases

Scenarlos

Is HWP a mitigation strategy in and of itself
Only pay for HWP stock changes

What happens when you bring the rest of the US Forest

Sectorin
Pay for all forest sector stock changes

What about a regional HWP-only strategy
Pay for only Lake States HWP stock changes



IS HWP A MITIGATION STRATEGY IN AND OF ITSELF?

Marginal Abatement Cost Curve

(MACC)

Steps:

1. Run the Carbon Price Scenarios through
2090 in 5-year time periods

2. Calculate additional sequestration in each
time period

3. Discount the additional carbon using 4%
(similar to Murray et al (2004))

4. Calculate the annual annuity value that
would equal the sum of the first 50 years
of discounted additional carbon

ax|(1+i)t-1]
ix(1+i0)t

VU=

V, is the sum of the discounted additional carbon over the first 40 years
i is the discount rate (here 4%)

tis the time period over which the annuity is calculated (here 40 years)
a is the annuity value (or a single value that could be applied annually
for 40 year and give us the discounted sum of additional sequestration
— it basically makes it so we have one value for each carbon price)

HWP Benefits — additionail
sequestration at each carbon price

100

Forestry — additional emissions at
each carbon price

Net Emissions

/

‘L

$t CO,

s HVW/P Only

s orestry

e [otal Forest Sector

(5,000) - 9,000

Additional tonnes CQO,

(15,000) (10,000)

Murray, B.C., B.A. McCarl, and H. Lee. 2004. Estimating Leakage from Forest Carbon Sequestration Programs. Land Economics 80(1):109-124.



IS HWP A MITIGATION STRATEGY IN AND OF ITSELF?

1000
This would be what the softwood
lumber demand (note: this is a 900
long-lived harvested wood product) 800
looks like. It is:

700

* Defined by an exogenous point
(the Py, and Q,,) and an
elasticity

600

$ / cubic meter
on
o
(e

* ltisinelastice;=-0.14

* Soasmallchange in Qleads to
big change in P

Thousands of cubic meters

The demand
curve limits
the amount
of mitigation



WHAT HAPPENS WHEN YOU BRING THE REST OF THE US FOREST SECTOR IN?

Using the forest side of FASOM .. ...sscrescoropmstonmoss

with Greenhouse Gases)

Scenarios

Is HWP a mitigation strategy in and of itself
Only pay for HWP stock changes

What happens when you bring the rest of the US Forest

Sectorin
Pay for all forest sector stock changes

What about a regional HWP-only strategy
Pay for only Lake States HWP stock changes



WHAT HAPPENS WHEN YOU BRING THE REST OF THE US FOREST SECTOR IN?

When we bring the
forestry carbon into
the payment scheme
it dominates the
mitigation

HWP carbon — additional HWP

carbon

$t CO,

100 y
30\

(1,000)

Forestry — additional
sequestration at each carbon price

a

Net Sequestration

e S cenario 1 HWP Only
== == Scenario 2 HWP Only

1,000 2,000 3,000

Additional tonnes CQO,

4,000 9,000



IS HWP A MITIGATION STRATEGY IN AND OF ITSELF?

with HWP production in commodities that ith f .
tend to be inelastic which drops price with torestry:
which in turn disincentivizes more

production . .
* An increase in forest growth

does not have to lead to a
reduction in product prices

1000

e So you can do as much as
you would want*

* And it can actually lead to an
increase in production later
on

150




WHAT ABOUT A REGIONAL HWP-ONLY STRATEGY?
Usmg the forest side of FASOM .. .mwesectoropmiatonmods

with Greenhouse Gases

Scenarlos

Is HWP a mitigation strategy in and of itself
Only pay for HWP stock changes

What happens when you bring the rest of the US Forest

Sectorin
Pay for all forest sector stock changes

What about a regional HWP-only strategy
Pay for only Lake States HWP stock changes



WHAT ABOUT A REGIONAL HWP-ONLY STRATEGY?

In this particular scenario,
the long-lived wood
product of choice is
Oriented Strandboard
(OSB)

And we actually see an
increase in paperboard
production - but using
market pulp produced out
of region

Other regions might be
different

Forestry - In Lake States

add.iti_onal additional HWP
emissions at Carbon

each carbon 100 :
price g0 *
[

Net
80

Sequestration .
/ a
| ]
[ ]
. 8

70 pe o
L B o
™
) 60 oe .
.:3] ee '-
O 50 35 .
=

i
40 o .
a ' .
e e e e Scenario3 LS HWP Only .

Scenario 3 Rest of US HWP * “
e & & 8 Scenario 3 Forestry

e e o o Scenario 3 Forest Sector e

(8,000) (3,000) 2,000 7,000

Additionaltonnes CO,



CHALLENGES AND CONSIDERATIONS

Market Demand and Consumer Preferences: shifting market demand and consumer

preferences towards wood-based products requires education, awareness, and incentives to incentivize
sustainable choices and practices.

Lifecycle Assessments: Conducting comprehensive lifecycle assessments to evaluate the carbon

implications of different wood products and disposal pathways is essential for informing decision-making
and optimizing carbon benefits.

Policy and Regulation: Developing supportive policies and regulations that recognize the carbon

benefits of harvested wood products and incentivize sustainable forest management and wood utilization
practices is crucial for scaling up adoption and investment.



I’LL WRITE MY OWN CONCLUSION

This was a very basic/simple evaluation of HWP mitigation
strategies.
Harvested Wood Products are not a strategy in and of
themselves

You need to look at the forestry effects as well

Including market effects / elasticities is important

Markets have a dampening effect on scale not present in forestry mitigation

Regional policies targeting a shift to longer lived wood products (with no change in demand)
may result in 100% leakage

Because I’'m in academia: More work is needed

Elasticities are old and in need of updating
As we expand mass timber and biofuels/biomaterials we should be careful in our accounting



Greg Latta
I Director, Policy Analysis Group

Universityofldaho
College of Natural Resources 'i @UIDAHOCNR

e-newsletter and reports
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