

Shivan Gc, Assistant Professor Chad Papa, Director, FCCP Kylie Clay, FCCP

Forest Carbon Management: climate considerations

- Lots of terms!: climate-smart forestry, carbon stewardship, adaptive management, adaptive silviculture
- Carbon is just one management goals among other goals
- Optimizing carbon means balancing climate tradeoffs with other traditional management goals in the context of ecosystem integrity and climate adaptation

Modeling climate-smart forestry in MD and PA Carbon Budget Model – Canadian Forest Sector

(CBM-CFS3)

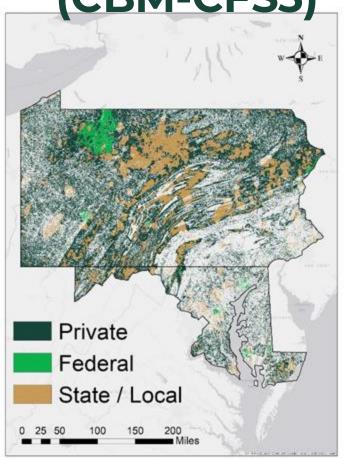


TABLE 1 Percentage of forestland by ownership.

Ownership	MD (%)	PA (%)
USFS		3.06
Other federal	2.70	0.88
State/local	24.34	26.85
Private/tribal	72.96	69.20

Frontiers | Frontiers in Forest and Global Change

TYPE Original Research PUBLISHED 07 November 2023 DOI 10.3589/Hgc.2023.1259010

TABLE 2 Percentage of forestland by forest type group.

Forest type group	MD (%)	PA (%)
White/red/jack pine group	1.42	2.63
Loblolly/shortleaf pine group	16.26	0.48
Other softwoods group	0.58	0.35
Oak/pine group	7.82	1.65
Oak/hickory group	59.81	53.89
Oak/gum/cypress group	4.70	0.13
Elm/ash/cottonwood group	3.91	2.31
Maple/beech/birch group	3.75	31.43
Aspen/birch group		1.74
Other hardwoods group	1.22	4.74
Nonstocked	0.66	0.67

PEN ACCESS

ITTO BY
ohammad Ibrahim Khalii,
niversity Collogo Dublin, Ireland
snewto are
and Ellison,
siversity of Born, Switzerland
nil Conciala,
stitute of Forest Ecosystem Research,
echia

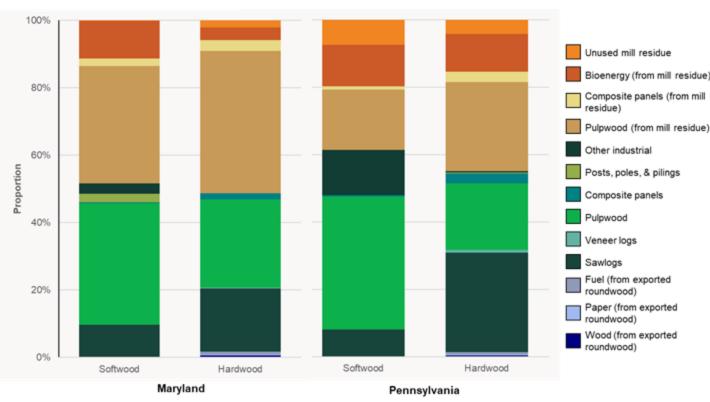
DIRESPONDENCE
had C, Papa
papachad@rrsu.edu
indall Dolyson
kdelyson(tamericanforests.org

Check for update

covid 14 July 2023 corred 16 October 2023 musico 07 November 2023 Modeling climate-smart forest management and wood use for climate mitigation potential in Maryland and Pennsylvania

Chad C. Papa^{1,2}*, Kendall DeLyser³*, Kylie Clay², Daphna Gadoth-Goodman², Lauren Cooper², Werner A. Kurz⁴, Michael Magnan⁴ and Todd Ontl⁵

*Department of Forestry, Michigan State University, East Lansing, ML United States, *Forest Carbon and Climate Program, Department of Forestry Michigan State University, Fast Lansing, ML United States, *Neurolan Forests, Washington, DC, United States, *Neural Resources Canada, Canadian Forest Service, Victoria, BC, Canada, *Office of Sustamability and Climate, U.S. Forest Service, Washington, DC, United States


https://www.frontiersin.org/journals/forests-and-global-change/articles/10.3389/ffgc.2023.1259010/full

Timber Products

Data obtained from HWPs model in different product stream categories

State-level trade & commodity data from:

- USFS RPA Assessments (2021)
- US Commodity Flow Surveys (US Census, 2020)
- US ITC data (2021)
- Peer-reviewed sources (Howard & Liang, 2019)
- National averages (if no local data)
 FAOSTAT (2021) for export data
 Product half-lives from literature (Smith et al., 2006; Skog, 2008)

Primary product ratios for commodities produced in Maryland and Pennsylvania differentiated between softwood and hardwood inputs shown as a proportion of total volume harvested.

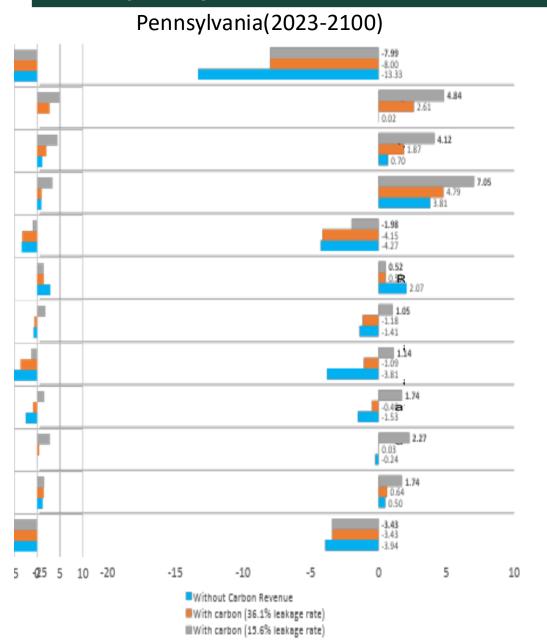
Economic Tradeoffs of Carbon and Timber Products Estimation

To quantify financial tradeoffs of carbon and timber products resulting from the CBM-CFS management scenarios, Net Present Value for each modeled scenario were estimated and compared to BAU scenario.

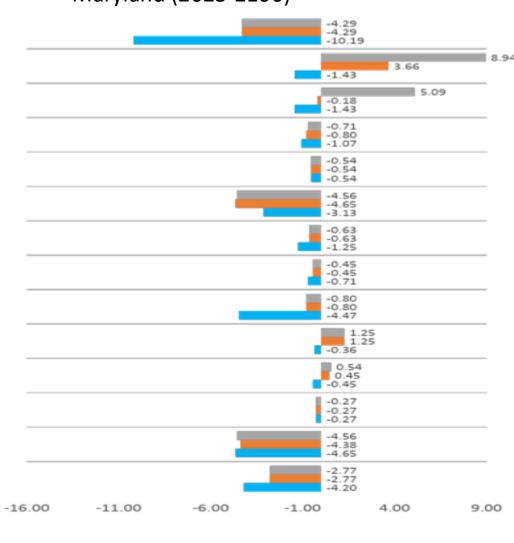
$$NPV = \sum \frac{R}{(1+i)^t} - \sum \frac{C}{(1+i)^t}$$

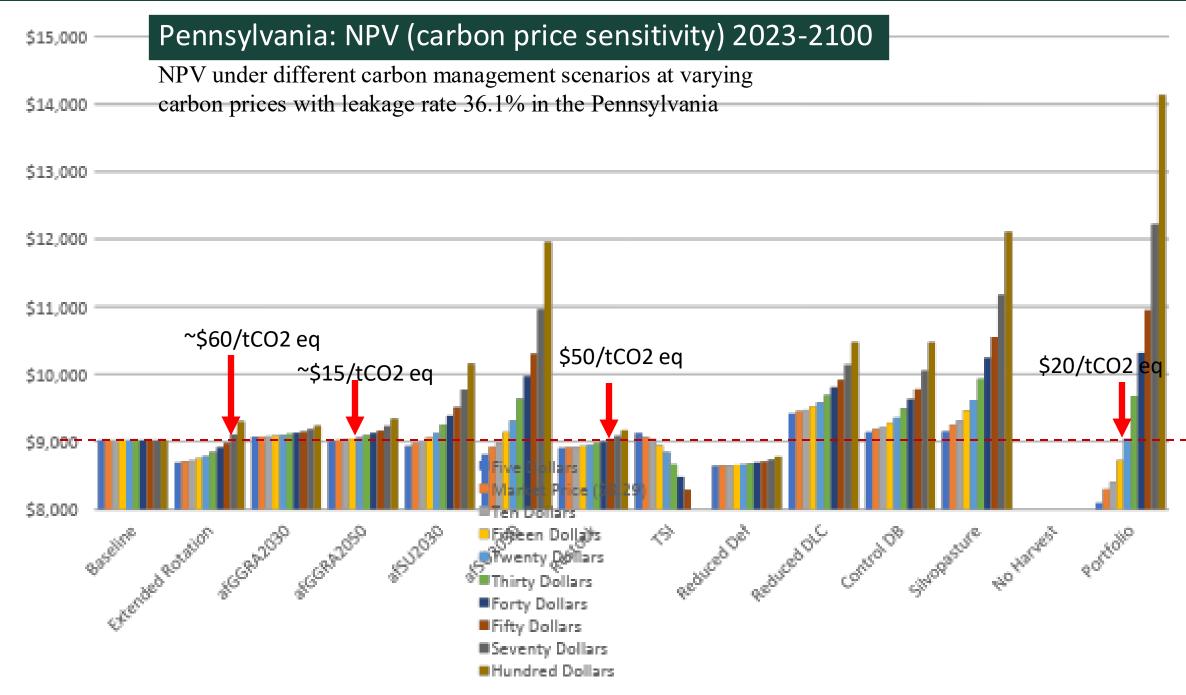
R is the revenue generated from the harvested wood products and/or carbon credits under each management scenario for a certain duration [Short term (2023 to 2032), Medium term (2023 to 2050), Medium-long term (2023 to 2070) and Long term (2023 to 2100)]

C is the costs associated with implementing each modeled management scenario including BAU for the same duration

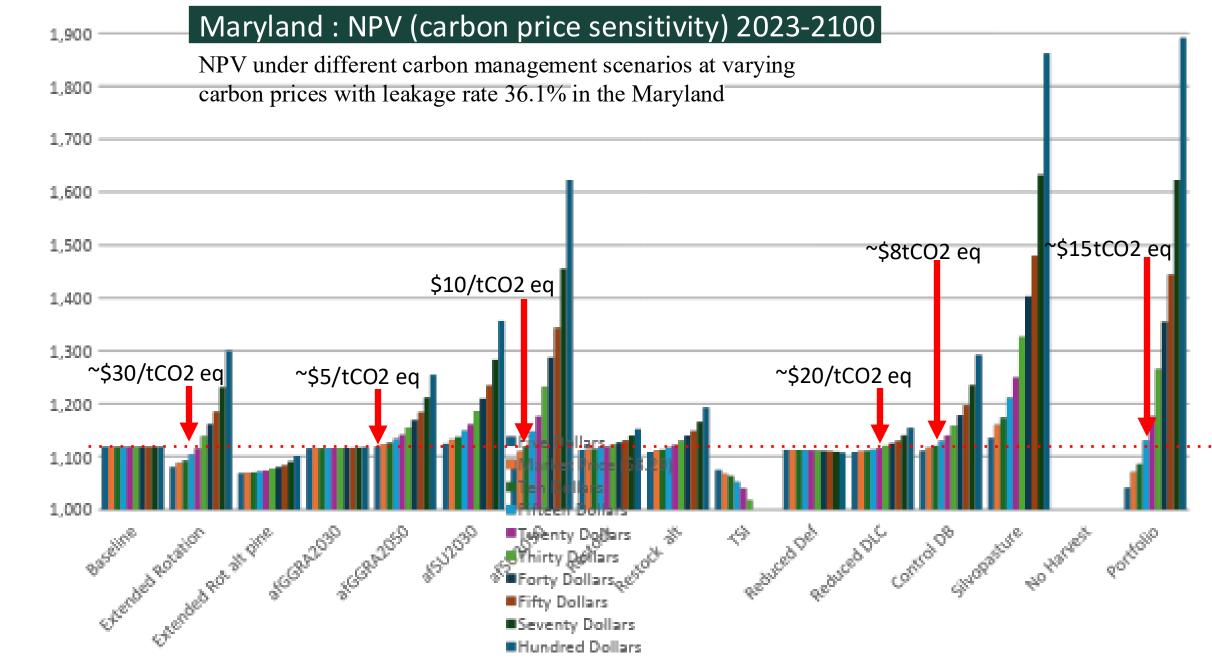

i is the minimum acceptable real rate of return (RoR) and t is the time in years during the period considered.

- Stumpage Price for revenue estimation from State agencies
- Management Cost for different prescriptions from Environmental Quality Incentives Program's (EQIP)
 payment schedule 2022
- Carbon Price from Live Carbon Prices today- Price per ton of CO₂ equivalent = \$8.29 dollars for year
 2022


Alternative Management Scenarios


1	Baseline/ BAU	Represents continuation of current management practices (harvests, thinning, and prescribed burn).	
2	Altered rotations	Increased / decrease in the average harvest age of stands	
3	Altered rotations alt.	Increase/decrease in the average harvest age of stands	
4	afGGRA2030	Increase in the annual rate of afforestation until 2030	
5	afGGRA2050	Increase in the annual rate of afforestation until 2050	
6	afSU2030	Increase in the annual rate of afforestation until 2030	
7	afSU2050	Increase in the annual rate of afforestation until 2050	
8	Restocking	Increase annual rate of stands being restocked through active planting until 2030	
9	Restocking alt.	Increased annual rate of stands being restocked through active planting until 2050	
10	Timber stand improvement (TSI)	Increase in the annual rate of commercial thinning and prescribed burns	
11	Reduced deforestation	Decrease in the annual rate of deforestation	
12	Reduced diameter-limit-	Decrease in the annual rate of diameter limit cuts (DLCs) until zero acres (i.e.,	
	cuts (DLCs)	high-grading)	
13	Control DB	Increase in the annual rate of fencing to control deer browse	
14	Silvopasture	Increase in the rate of silvopasture adoption on pastureland	
15	No harvest activities†	Complete reduction in all harvesting activities	

Percentage change in NPV for alternative carbon management scenarios compared to business as usual



Maryland (2023-2100)

Key Takeaways

- Extended or Altered Rotation negatively affect economics of forest management
- Silvopasture development, control deer browse can produce carbon as well as economic return at lower payment for carbon
- Afforestation and restocking only works when there is payment for carbon with lower leakage rates
- TSI and reduced DLC can provide economic as well as carbon benefits when done right
- States with robust forestry sector needs higher payment for carbon compared to states where there is less robust forest product markets.

Thank you!

Contact

Raju Pokharel, PhD

Assistant Professor

517-353-9447

raju2020@msu.edu

Estimate tradeoff of extending rotation on your landhttps://www.canr.msu.edu/FERM/Tools/Fores t-Carbon-Calculator/

