Sustainable Forest Management Department of Forest Engineering, Resources & Management

EVALUATING THE COSTS AND CREDIT MARKET DYNAMICS OF OREGON'S CLEAN FUELS PROGRAM

Insights from the Oregon Clean Fuels Program for Sustainable Development

(Chukwuemeka Valentine Okolo, Andres Susaeta, Mindy Crandall, John Sessions)

Western Forest Economist Annual Meeting May 15 - 16 in Seattle, WA

on Introduction

o7 Implementation

02 Problem

⁰⁸ Results

03 Literary Review

9 Analysis

o4 Framework

10 Recommendations

95 Hypothesis

11 Conclusion

o6 Methodology

12 Future Research

• Climate change - Development of policies -reduce GHGs.

o Oregon's Clean Fuels Program (CFP) in 2016

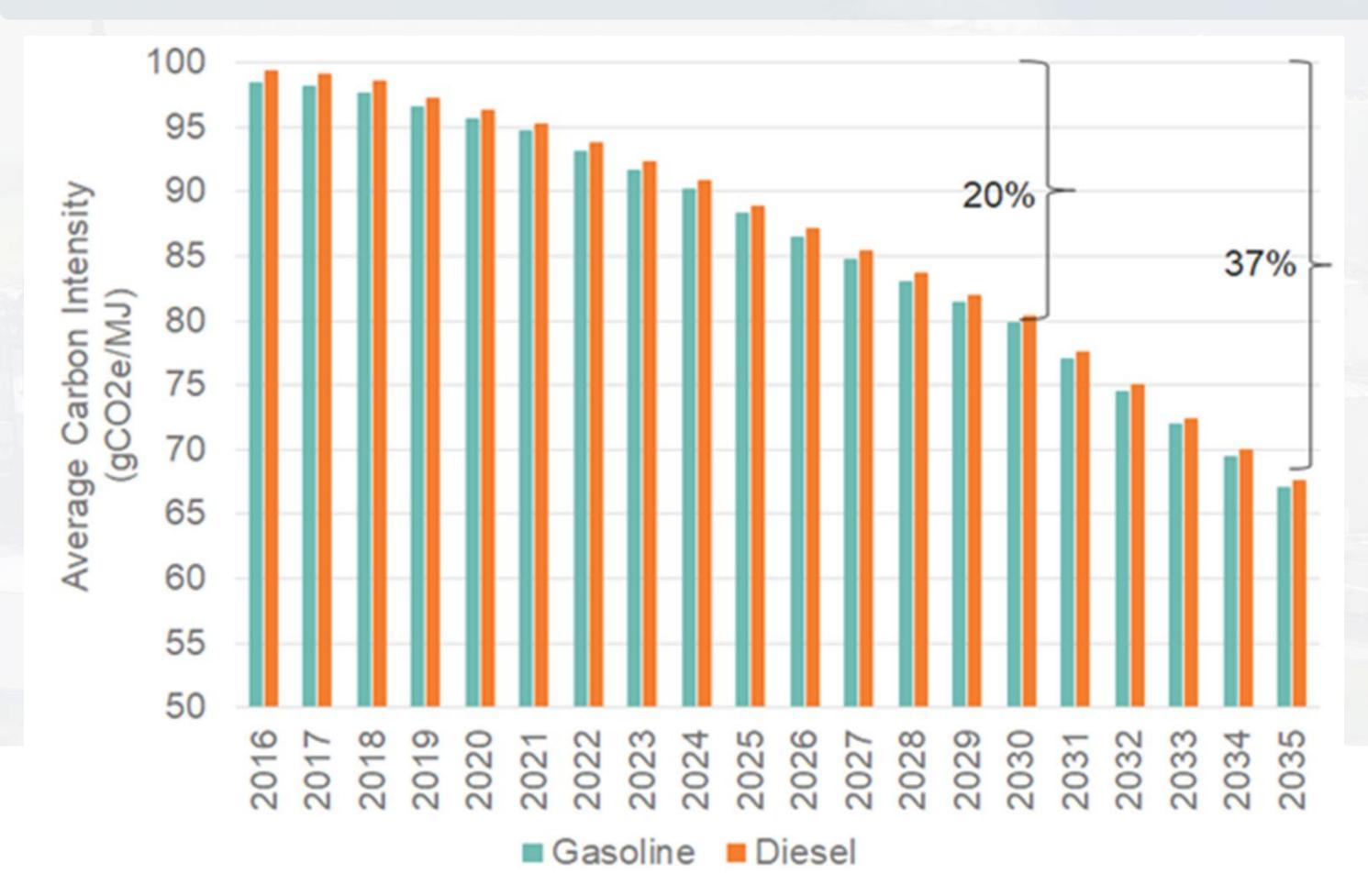
• Statewide market-based incentive program

Low-carbon fuel adoption through credit generation and trading for

OR CLEAN FUELS
STANDARD NOW
STRONGEST IN THE NATION!

State of Oregon
Department of
Environmental
Quality

INTRODUCTION


Goals of the Oregon Clean Fuels Program

• Reduce the CI of transport. Fuels by 10% (2015–2025).

- Encourage the use of:
 - Biofuels: Ethanol, biodiesel, renewable diesel
 - Electricity: EV charging incentives
 - Renewable Natural Gas (RNG) & Hydrogen

INTRODUCTION

COLLEGE OF FORESTRY

HOW THE OREGON CLEAN FUELS PROGRAM WORKS

Set Carbon Intensity (CI) Targets
Oregon DEQ sets annual CI reduction targets

Fuel Suppliers Report CI Values
Fuel producers/importers report fuel carbon intensity.

Clean Fuel Providers Generate Credits

Low-carbon fuel suppliers earn credits below CI target.

Deficit Holders Buy Credits
High-Cl fuel suppliers must buy credits to offset excess.

Credit Trading Market Balances Compliance

Market-based credit trading enables flexible compliance.

Oregon DEQ Monitors & Enforces Compliance
Ensures accurate reporting and enforces compliance.

Reduced Transportation Emissions

Program outcome: lower GHGs and cleaner air.

INVESTIGATING THE EFFICIENCY OF OREGON CFP IN CI REDUCTION

This study aims to explore the relationship between Cost of Oregon's CFP, credit markets and CI reduction as Manage by the Sate DEQ

Framewor

k

Supplier and Demander Equations

$$D(P) = \alpha - \beta P + \lambda(Cost \ of \ Emissions \ Reductions)$$

$$S(P) = \Upsilon + \delta P$$

Market Clearing Reduced-Form Equation

$$\alpha - \beta P^* + \lambda(Cost \ of \ Emissions \ Reductions) = \Upsilon + \delta P^*$$

$$P^* = \frac{\alpha - \Upsilon + \lambda(Cost \ of \ Emissions \ Reductions)}{\beta + \delta}$$

$$CI = \theta - \phi P + k(Low - CI Fuel Production)$$

$$CI = \theta - \phi P + k(Low - CI Fuel Production) + \gamma Z + \epsilon$$

PRE-TEST &

Stationarity TestODOLOGY Regres

Augmented Dickey-Fuller (ADF)
 Test

• Phillips-Perron (PP) Test

Regression Techniques

Ordinary Least Squares (OLS)

•ARCH model (non-constant error variance)

Quantile model (different distribution points (quantiles))

•Fully Modified Ordinary Least Squares (FMOLS)

$$CI_{avg} = \gamma_1 + \gamma_2 S_t + \gamma_3 D_t + \epsilon_t$$
 Mean Equation

$$Q_T(CI_{avg}\backslash X) = \gamma_1 + \gamma_2 S_t + \gamma_3 D_t + \epsilon_t$$

EMPIRICAL
$$CI_{avg} = \gamma_1 + \gamma_2 Ave \ CFP \ Cost_t + \gamma_3 Bioenergy + \gamma_4 Total \ Credits_t + \gamma_5 Low \ Carbon \ Transport_t + \epsilon_t$$

TECHNIQUE

$$CI_{avg} = \gamma_1 + \gamma_2 Ave \ CFP \ Cost_t + \gamma_3 GBioenergy + \gamma_4 Total \ Credit \ Value_t + \gamma_5 Low \ Carbon \ Transport_t + \epsilon_t$$

$$\begin{aligned} CI_{avg} &= \gamma_1 + \gamma_2 Ave \ CFP \ Cost_t + \gamma_3 Bioenergy \ + \gamma_4 Avg \ Price \ per \ Credit_t \\ &+ \gamma_5 Low \ Carbon \ Transport_t \ + \ \epsilon_t \end{aligned}$$

$$CI_{avg} = \gamma_1 + \gamma_2 Ave\ CFP\ Cost_t + \gamma_3 Bioenergy + \gamma_4 Credits\ Transferred_t + \gamma_5 Low\ Carbon\ Transport_t + \epsilon_t$$

DATA AND VARIABLES

Variables	Abbreviation	Definition	Units
Ethanol CI	CI	Measures the grams of CO2 equivalent per megajoule (gCO2e/MJ).	gCO2e/MJ
Bioenergy	BIO	State-level innovation index in bioenergy technologies.	Index score
Total Credits	TC	Total number of emission reduction credits generated or traded within CFP.	Number of credits
Total Credit Value	TCV	The total monetary value of credits traded within Oregon CFP.	USD
Credits Transferred	CT	Total credits transferred between parties in the market.	Number of credits
Avg Price Per Credit	APPC	The average market price for credits traded in the Oregon CFP.	USD
Low-Carbon Transport	LCT	Innovation index in low-carbon transport technologies.	Index score
Avg B5 CFP Cost	AB5C	Average compliance cost for B5 biodiesel under CFP.	USD
Avg E10 CFP Cost	AE10C	Average compliance cost for E10 ethanol under CFP.	USD

EMPIRICAL ANALYSIS BASELINE ESTIMATION RESULTS

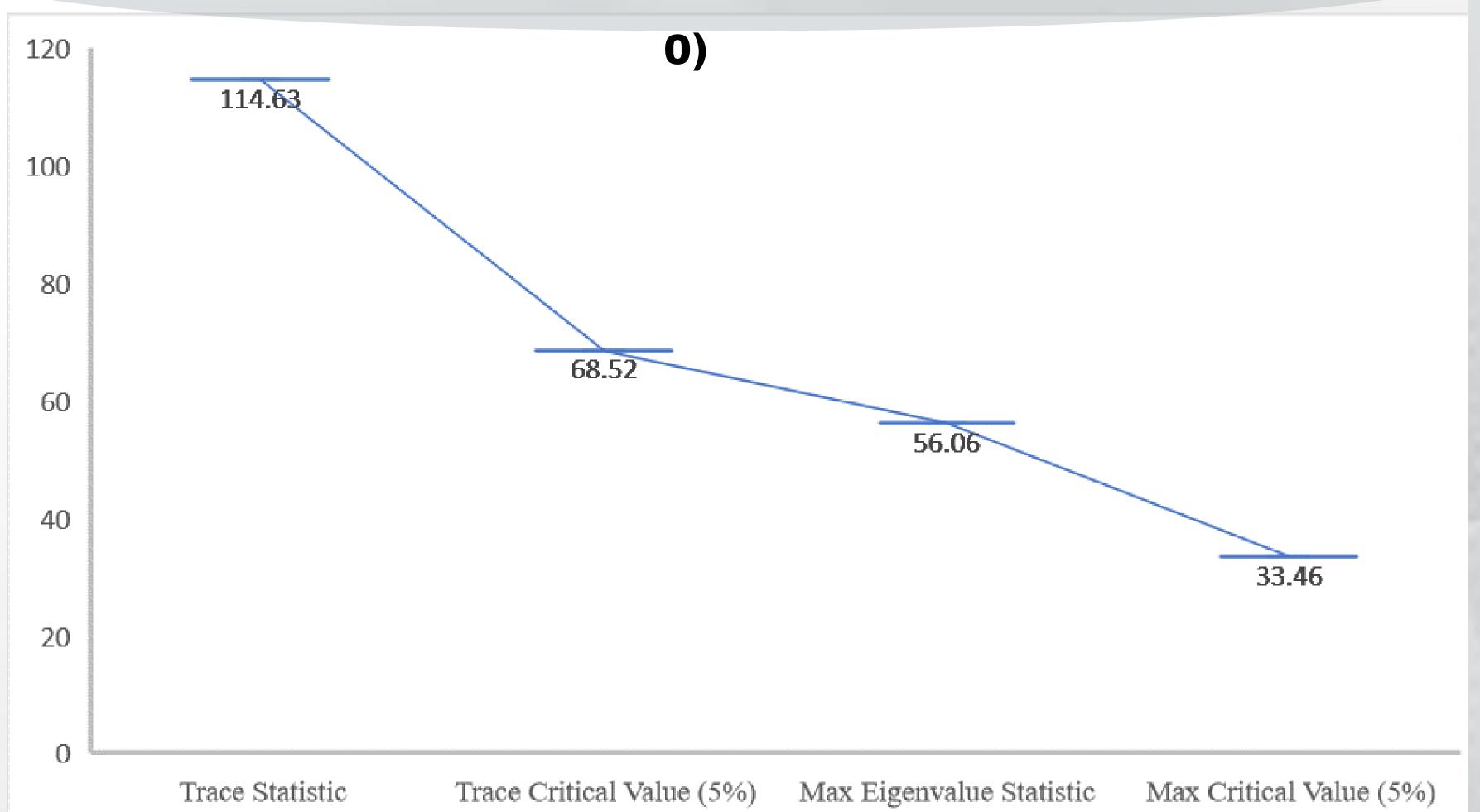
COLLEGE OF FORESTRY

Augmented	$\mathbf{D}_{\mathbf{i}}$	ıckev-Fuller Te	st for S	Stationarit	у (Unit Roots)
		~			<i>y</i> ~		1

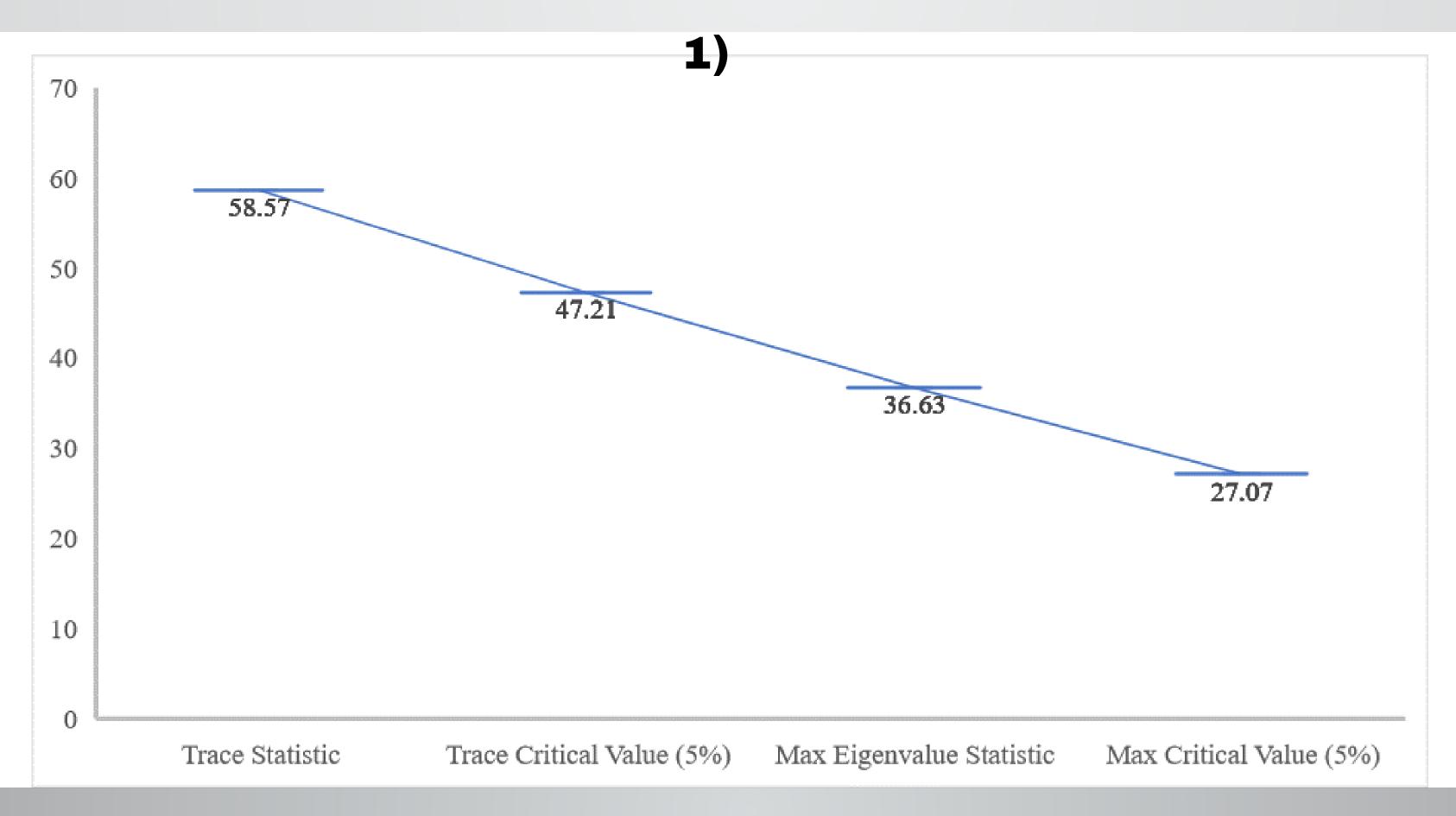
				-,	
Variable	Test Statistic	1% Critical	5% Critical	10% Critical	p-value
		Value	Value	Value	
CIR 1(1)	-10.023	-3.518	-2.895	-2.582	0.0000
BIO 1(1)	-9.598	-3.518	-2.895	-2.582	0.0000
TC 1(1)	-13.872	-3.511	-2.891	-2.580	0.0000
TCV 1(1)	-13.435	-3.511	-2.891	-2.580	0.0000
APPC 1(1)	-9.714	-3.516	-2.893	-2.582	0.0000
CT1(1)	-12.052	-3.516	-2.893	-2.582	0.0000
LCT 1(1)	-9.615	-3.518	-2.895	-2.582	0.0000
AB5C 1(1)	-9.555	-3.535	-2.904	-2.587	0.0000
AE10C 1(1)	-9.559	-3.535	-2.904	-2.587	0.0000

PHILLIPS-PERRON TEST FOR STATIONARITY (UNIT

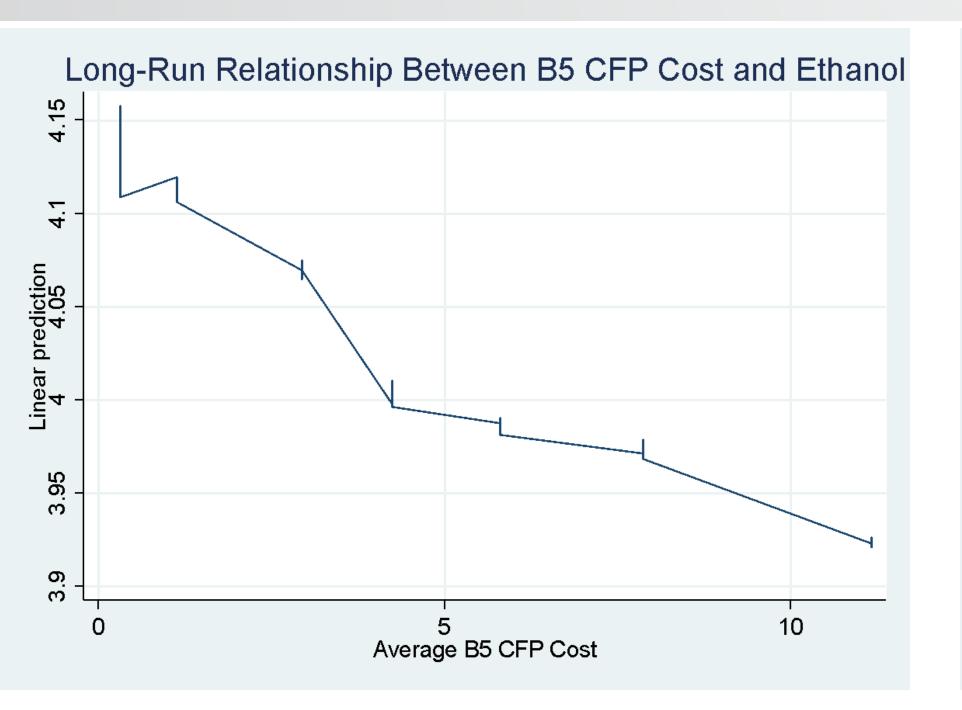
				ROOTS					
Phillips_Perro	n Test for	Stationar	ıty (Unıt I	Roots)	<i>,</i>				
V ariable	Test Statis		1% Critic		5% Critica	al Value	10% Criti	cal Value	p-value
	Z(rho)	Z(t)	Z(rho)	Z(t)	Z(rho)	Z(t)	Z(rho)	Z(t)	
CIR 1(1)	-93.476	-10.054	-19.692	-3.518	-13.652	-2.895	-10.964	-2.582	0.0000
BIO 1(1)	-94.013	-9.597	-19.692	-3.518	-13.652	-2.895	-10.964	-2.582	0.0000
TC 1(1)	-103.827	-18.045	-19.782	-3.511	-13.692	-2.891	-10.994	-2.580	0.0000
TCV 1(1)	-101.212	-16.985	-19.782	-3.511	-13.692	-2.891	-10.994	-2.580	0.0000
APPC 1(1)	-72.248	-10.268	-19.728	-3.516	-13.668	-2.893	-10.976	-2.582	0.0000
CT1(1)	-89.158	-14.589	-19.728	-3.516	-13.668	-2.893	-10.976	-2.582	0.0000
LCT 1(1)	-94.049	-9.615	-19.692	-3.518	-13.652	-2.895	-10.964	-2.582	0.0000
AB5C 1(1)	-82.327	-9.611	-19.476	-3.535	-13.556	-2.904	-10.892	-2.587	0.0000
AE10C 1(1)	-82.323	-9.616	-19.476	-3.535	-13.556	-2.904	-10.892	-2.587	0.0000

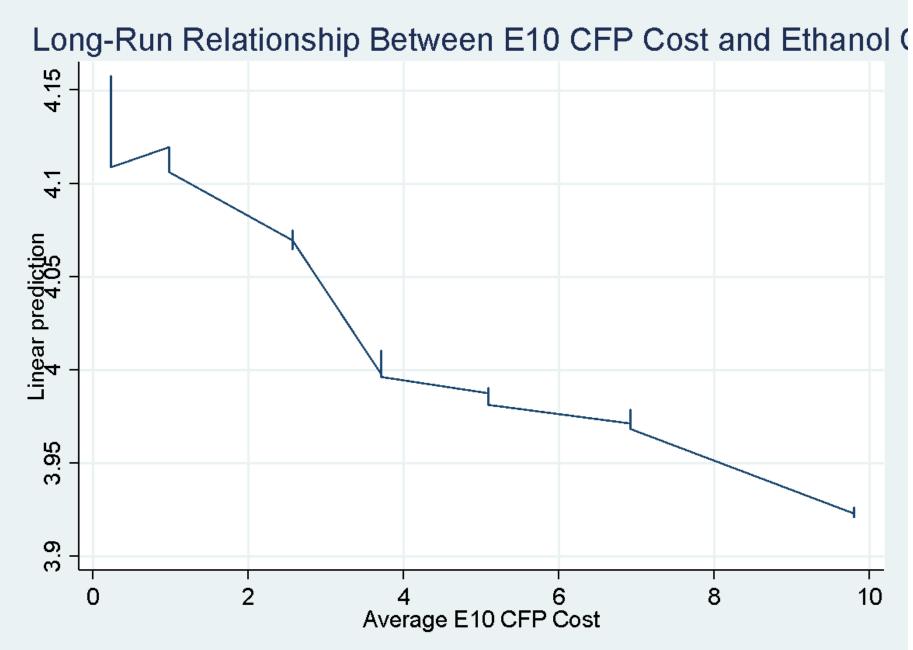


JOHANSEN TESTS FOR COINTEGRATION


Johansen tests for cointegration Critical Conclusion Eigenvalue Max Number of Log-Max Rank Trace Likelihood Value Eigenvalue Critical Parameters Statistic Statistic (LL) Value (5%)(5%)Evidence of 56.06 33.46 0 130 385.17 68.52 114.63 cointegration 58.57 Evidence of 47.21 139 0.51262 27.07 413.2 36.63 cointegration

JOHANSEN TESTS FOR COINTEGRATION (RANK


JOHANSEN TESTS FOR COINTEGRATION (RANK



COINTEGRATION REGRESSION (FMOLS)

Comingianon region	(3)	(2)	(2)	(4)	(5)	(6)	(7)	(0)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Lagged CI	0.780^{***}	0.780^{***}	0.774***	0.774***	0.779^{***}	0.776***	0.778***	0.778***
	(0.0356)	(0.0357)	(0.0340)	(0.0340)	(0.0373)	(0.0373)	(0.0326)	(0.0326)
BIO	-0.136***	-0.136***	-0.140***	-0.140***	-0.139***	-0.140***	-0.126***	-0.127***
	(0.0403)	(0.0403)	(0.0383)	(0.0383)	(0.0421)	(0.0419)	(0.0361)	(0.0361)
LCT	-0.0101***	-0.0102***	-0.0104***	-0.0104***	-0.0101***	-0.0101***	-0.00917***	-0.00921***
	(0.00274)	(0.00274)	(0.00259)	(0.00258)	(0.00287)	(0.00286)	(0.00248)	(0.00248)
AB5C	-0.00269***		-0.00281***		-0.00269***		-0.00298***	
	(0.000545)		(0.000514)		(0.000572)		(0.000496)	
AE10C		-0.00306***		-0.00321***		-0.00311***		-0.00340***
	***	(0.000620)		(0.000585)		(0.000649)		(0.000565)
TC	-0.00162***	-0.00162***						
TOTA	(0.000429)	(0.000429)	0.00102***	0.001.02***				
TCV			-0.00103***	-0.00102***				
CT			(0.000261)	(0.000261)	0.00100***	0.00100***		
CT					-0.00180*** (0.000516)	-0.00180*** (0.000514)		
APPC					(0.000310)	(0.000314)	-0.00270**	-0.00268**
AITC							(0.000952)	(0.000952)
Constant	1.319***	1.322***	1.355***	1.356***	1.334***	1.348***	1.292***	1.295***
	(0.226)	(0.226)	(0.216)	(0.216)	(0.236)	(0.236)	(0.203)	(0.204)
Adjusted R2	0.95324	0.95362	0.95266	0.95266	0.95873	0.95914	0.95447	0.95448
Long run S.E.	0.00649	0.00649	0.00612	0.00612	0.00679	0.00677	0.00585	0.00585
Bandwidth	17.0138	16.7796	18.0184	17.9477	13.9830	13.4786	17.7105	17.4884
Observations	83	83	83	83	82	82	82	82

COINTEGRATION REGRESSION (FMOLS)

OLS - THE IMPACT OF AVERAGE COST OF THE CFP (B5 COST) ON CI

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Lagged CI	(1)	0.776***	ŘED	UCŢŢON	(5)	0.777***	(/)	0.777***
Zuggen er		(0.0754)		(0.0764)		(0.0758)		(0.0772)
E10	-0.707***	-0.119	-0.715***	-0.126	-0.702***	-0.116	-0.686***	-0.113
	(0.0967)	(0.0853)	(0.0957)	(0.0862)	(0.0976)	(0.0857)	(0.0972)	(0.0859)
LCT	-0.0212**	-0.00959	-0.0217**	-0.00990	-0.0211**	-0.00957	-0.0181**	-0.00872
	(0.00871)	(0.00582)	(0.00862)	(0.00583)	(0.00878)	(0.00586)	(0.00882)	(0.00591)
AB5C	-0.0125***	-0.00293**	-0.0125***	-0.00302**	-0.0125***	-0.00294**	-0.0130***	-0.00318***
	(0.00105)	(0.00116)	(0.00103)	(0.00116)	(0.00107)	(0.00117)	(0.000997)	(0.00118)
TC	-0.00408***	-0.00154*						
	(0.00116)	(0.000797)						
TCV			-0.00282***	-0.00100^*				
			(0.000747)	(0.000527)				
CT					-0.00442***	-0.00166*		
					(0.00128)	(0.000883)		
APPC							-0.00897***	-0.00272
							(0.00276)	(0.00193)
Constant	5.930***	1.293***	5.952***	1.327***	5.921***	1.283***	5.851***	1.264**
	(0.240)	(0.477)	(0.237)	(0.484)	(0.242)	(0.479)	(0.241)	(0.483)
F-Statistics	240.42	469.06	245.51	468.29	235.55	460.85	231.44	443.19
Probability Value	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
R-squared	0.9241	0.9678	0.9255	0.9678	0.9235	0.9677	0.9223	0.9664
Root MSE	.02105	.01379	.02085	.01381	.02121	.01389	.02108	.01394
VIF	1.83	5.55	1.81	5.62	1.85	5.52	1.71	5.48
Durbin-Watson Statistic		1.8128(6,84)		1.8183(6,84)		1.8026(6,83)		1.8425(6,83)
Breusch-Godfrey LM test		1.244(0.2647)		1.190(0.2753)		1.351(0.2451)		0.766(0.3816)
Breusch-Pagan Test	0.9534	0.0017	0.9138	0.0020	0.9990	0.0018	0.8633	0.0031
White's Test	0.0040	0.0080	0.0027	0.0090	0.0046	0.0073	0.0000	0.0184
Number of Observations	84	84	84	84	83	83	83	83

OLS - THE IMPACT OF AVERAGE COST OF THE CFP (E10 COST) ON CI

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Lagged CI		0.776***	REDU	CTION		0.777***		0.776***
BIO	-0.707***	-0.120	-0.714***	-0.126	-0.701***	-0.116	-0.686***	(0.0774) -0.113
<i>,</i>	(0.0966)	(0.0854)	(0.0956)	(0.0862)	(0.0975)	(0.0857)	(0.0971)	(0.0859)
LCT	-0.0213**	-0.00961	-0.0218**	-0.00992	-0.0212**	-0.00960	-0.0182**	-0.00875
	(0.00870)	(0.00582)	(0.00861)	(0.00583)	(0.00877)	(0.00586)	(0.00881)	(0.00591)
AE10C	-0.0142***	-0.00334**	-0.0142***	-0.00344**	-0.0142***	-0.00334**	-0.0148***	-0.00362***
	(0.00119)	(0.00132)	(0.00117)	(0.00132)	(0.00121)	(0.00133)	(0.00113)	(0.00134)
TC	-0.00404***	-0.00153*						
	(0.00116)	(0.000797)						
TCV			-0.00279***	-0.000995*				
			(0.000747)	(0.000527)				
CT					-0.00438***	-0.00165*		
					(0.00128)	(0.000883)	***	
APPC							-0.00887***	-0.00270
	5.000***	4.0.5***	5.051***	4.220***	5 0.1 0.***	4.20.6***	(0.00275)	(0.00192)
Constant	5.928***	1.295***	5.951***	1.329***	5.919***	1.286***	5.850***	1.267**
To Control	(0.239)	(0.478)	(0.237)	(0.484)	(0.241)	(0.480)	(0.241)	(0.484)
F-Statistics	241.12	469.06	246.15	468.29	236.27	460.88	232.07	443.21
Probability Value	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
R-squared	0.9243	0.9678	0.9257	0.9678	0.9238	0.9677	0.9225	0.9664
Root MSE	.02102	.01379	.02082	.01381	.02118	.01389	.02105	.01394
VIF	1.84	5.56	1.81	5.64	1.86	5.54	1.71	5.50
Durbin-Watson statistic		1.8125(6,84)		1.8180(6,84)		1.8024(6,83)		1.8422(6,83)
Breusch Pagan test	0.9387	1.251(0.2633) 0.0017	0.8997	1.197(0.2740) 0.0020	0.9834	1.357(0.2441) 0.0018	0.8509	0.772(0.3796) 0.0031
Breusch–Pagan test White's test	0.9387	0.0017	0.8997	0.0020	0.9834	0.0018	0.8309	0.0031
Number of Observations	84	84	84	84	83	83	83	83
Trumoet of Coscivations	04	U -1	07	07	0.5	0.5	03	

ARCH	- THE IM	PACT O	F THE A	VERAG	E COST	OF THE	CFP ON	CI
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
CI			DED	UÇŢJON				
BIO	-0.846***	-0.846***	-0.843	9.89	-0.834***	-0.825***	-0.821***	-0.821***
	(0.0399)	(0.0382)	(0.0364)	(0.0352)	(0.0394)	(0.0376)	(0.0348)	(0.0344)
LCT	-0.0274***	-0.0272***	-0.0265***	-0.0263***	-0.0268***	-0.0262***	-0.0246***	-0.0247***
	(0.00451)	(0.00416)	(0.00392)	(0.00376)	(0.00446)	(0.00404)	(0.00347)	(0.00342)
AB5C	-0.0135***		-0.0138***		-0.0134***		-0.0137***	
	(0.000422)		(0.000366)		(0.000408)		(0.000419)	
AE10C		-0.0155***		-0.0157***		-0.0153***		-0.0155***
		(0.000453)		(0.000410)		(0.000445)		(0.000480)
TC	-0.00143**	-0.00128**						
	(0.000557)	(0.000577)						
TCV			-0.000753***	-0.000737***				
			(0.000218)	(0.000219)				
CT			()	()	-0.00162***	-0.00219***		
					(0.000524)	(0.000360)		
APPC					(0.00022.)	(0.00000)	-0.00687***	-0.00674***
							(0.000955)	(0.000952)
Constant	6.277***	6.273***	6.259***	6.248***	6.247***	6.227***	6.211***	6.211***
	(0.123)	(0.116)	(0.111)	(0.106)	(0.119)	(0.106)	(0.102)	(0.101)
ARCH				` '	,			` `
L.arch	1.520***	1.582***	1.636***	1.638***	1.474***	1.438***	1.507***	1.505***
	(0.343)	(0.340)	(0.330)	(0.327)	(0.335)	(0.378)	(0.339)	(0.337)
Constant	0.0000138	0.0000105	0.00000734	0.00000709	0.0000167	0.0000228	0.00000537	0.00000537
	(0.00000871)	(0.00000893)	(0.00000664)	(0.00000625)	(0.00000871)	(0.0000149)	(0.00000281)	(0.00000275)
Wald chi2(4)	13111.54	19329.25	19558.74	17691.99	10964.01	11703.63	7246.43	7122.79
Probability	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Log-likelihood	230.1127	230.2223	230.9511	231.0593	226.7829	226.7689	231.2652	231.1364
Obsamistions	0.4	01	0.4	01	02	02	02	02

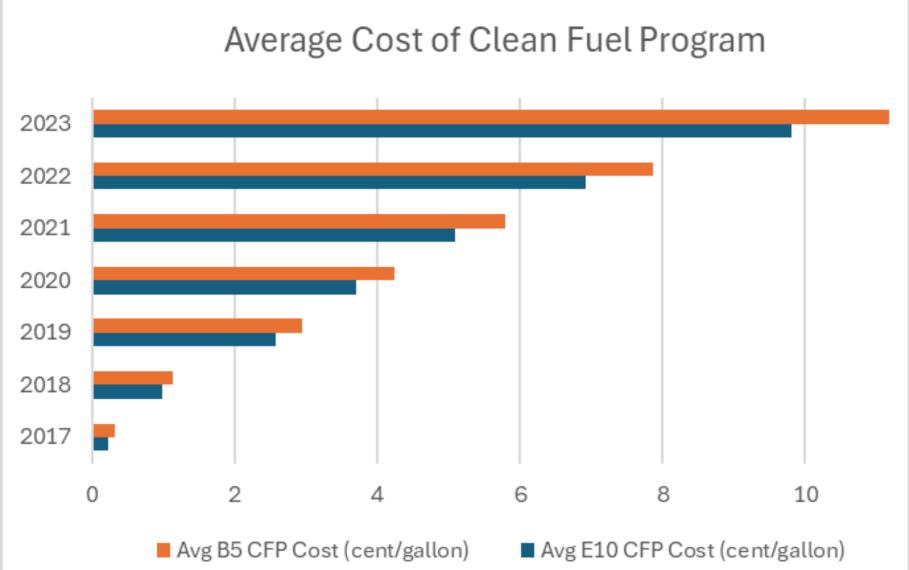
.25 QUANTILE - THE IMPACT OF AVERAGE COST OF THE CFP ON CI

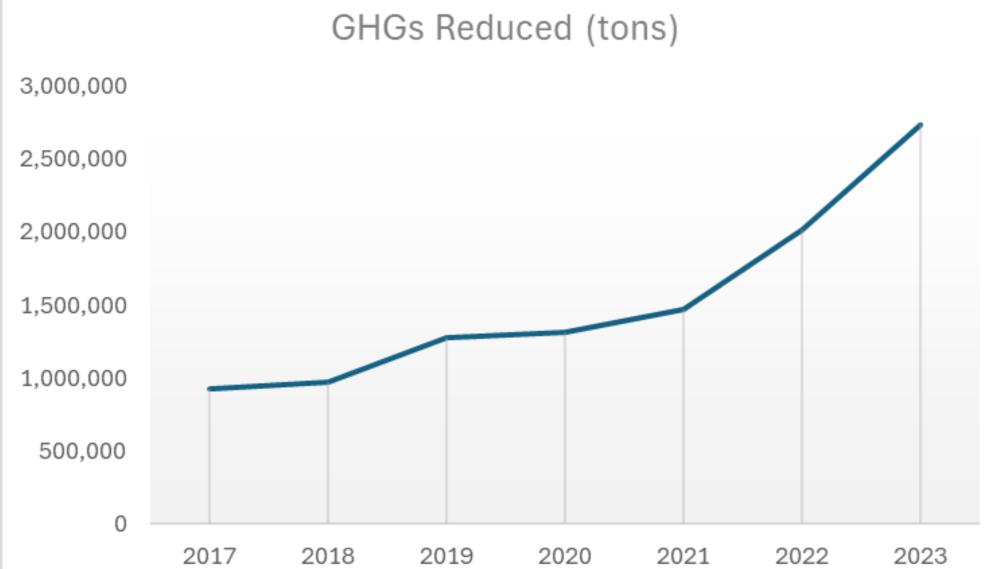
.25 Quantile regression	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
BIO	-0.457***	-0.455***	-0.4cc*	O.4.5 ! **	-0.453***	-0.451***	-0.647***	-0.646***
	(0.151)	(0.150)	(0.132)	(0.132)	(0.149)	(0.149)	(0.118)	(0.117)
LCT	-0.0101	-0.0102	-0.0125	-0.0125	-0.00949	-0.00962	-0.0479***	-0.0480***
	(0.0136)	(0.0135)	(0.0119)	(0.0119)	(0.0134)	(0.0134)	(0.0107)	(0.0107)
AB5C	-0.0152***		-0.0151***		-0.0152***		-0.0129***	
	(0.00163)		(0.00143)		(0.00163)		(0.00120)	
AE10C		-0.0173***		-0.0172***		-0.0173***		-0.0147***
		(0.00185)		(0.00162)		(0.00185)		(0.00137)
TC	-0.00346*	-0.00342*						
	(0.00180)	(0.00180)						
TCV			-0.00250**	-0.00247**				
			(0.00103)	(0.00103)				
CT					-0.00346*	-0.00341*		
					(0.00196)	(0.00196)		
APPC							-0.0105***	-0.0104***
							(0.00333)	(0.00333)
Constant	5.252***	5.248***	5.283***	5.277***	5.238***	5.234***	6.050***	6.048***
	(0.373)	(0.372)	(0.328)	(0.328)	(0.369)	(0.368)	(0.291)	(0.291)
Raw sum of deviations	1.794951	1.794951	1.794951	1.794951	1.793222	1.793222	1.751402	1.751402
Min sum of deviations	.537982	.5378936	.5239388	.5240265	.5354404	.5352256	.5105647	.5107544
Pseudo R2	0.7003	0.7003	0.7081	0.7081	0.7014	0.7015	0.7085	0.7084
Number of Observations	84	84	84	84	83	83	83	83

.50 QUANTILE - THE IMPACT OF AVERAGE COST OF THE CFP ON CI

.50 Quantile regression	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
BIO	-0.768***	-0.770***	-0.7	- J. / Ó *	-0.761***	-0.763***	-0.704***	-0.707***
	(0.0882)	(0.0867)	(0.104)	(0.102)	(0.0923)	(0.0932)	(0.112)	(0.111)
LCT	-0.00833	-0.00838	-0.00966	-0.00966	-0.00704	-0.00709	-0.00291	-0.00304
	(0.00794)	(0.00781)	(0.00941)	(0.00922)	(0.00831)	(0.00838)	(0.0101)	(0.0101)
AB5C	-0.0126***		-0.0130***		-0.0133***		-0.0139***	
	(0.000956)		(0.00113)		(0.00101)		(0.00114)	
AE10C		-0.0143***		-0.0147***		-0.0150***		-0.0157***
		(0.00107)		(0.00126)		(0.00116)		(0.00129)
TC	-0.00349***	-0.00345***						
	(0.00105)	(0.00104)						
TCV			-0.00152*	-0.00151*				
			(0.000816)	(0.000801)				
CT					-0.00204*	-0.00200*		
					(0.00122)	(0.00123)		
APPC							-0.00469	-0.00459
							(0.00316)	(0.00315)
Constant	5.934***	5.939***	5.952***	5.951***	5.892***	5.896***	5.725***	5.733***
	(0.218)	(0.215)	(0.259)	(0.254)	(0.228)	(0.231)	(0.277)	(0.275)
Raw sum of deviations	2.635532	2.635532	2.635532	2.635532	2.620674	2.620674	2.56403	2.56403
Min sum of deviations	.6136059	.6129506	.6056751	.6053263	.6167313	.6163539	.6045176	.6043123
Pseudo R2	0.7672	0.7674	0.7702	0.7703	0.7647	0.7648	0.7642	0.7643
Number of Observations	84	84	84	84	83	83	83	83

.75 QUAN	TILE - 1	<u> THE IM</u>	PACT O	FAVER	AGE CO	ST OF TI	HE CFP (ON CI
.75 Quantile regression	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
BIO	-0.836***	-0.838***	-0.849***	-1), 551	-0.839***	-0.840***	-0.822***	-0.822***
	(0.115)	(0.115)	(0.119)	(0.118)	(0.116)	(0.116)	(0.145)	(0.142)
LCT	-0.00147	-0.00153	-0.00322	-0.00332	-0.00243	-0.00246	-0.00291	-0.00306
	(0.0104)	(0.0104)	(0.0107)	(0.0106)	(0.0104)	(0.0104)	(0.0132)	(0.0129)
AB5C	-0.0128***		-0.0127***		-0.0125***		-0.0133***	
	(0.00125)		(0.00128)		(0.00127)		(0.00149)	
AE10C		-0.0144***		-0.0145***		-0.0143***		-0.0152***
		(0.00142)		(0.00145)		(0.00144)		(0.00165)
TC	-0.00235*	-0.00233*						
	(0.00138)	(0.00138)						
TCV			-0.00160	-0.00157				
			(0.000928)	(0.000924)				
CT					-0.00401**	-0.00393**		
					(0.00153)	(0.00153)		
APPC							-0.00207	-0.00196
							(0.00412)	(0.00403)
Constant	6.015***	6.018***	6.061***	6.063***	6.048***	6.049***	5.987***	5.987***
	(0.285)	(0.285)	(0.295)	(0.293)	(0.287)	(0.287)	(0.360)	(0.352)
Raw sum of deviations	2.09603	2.09603	2.09603	2.09603	2.064991	2.064991	2.05525	2.05525
Min sum of deviations	.4522363	.4510645	.4509423	.4498267	.4539622	.4525811	.4505775	.4494983
Pseudo R2	0.7842	0.7848	0.7849	0.7854	0.7802	0.7808	0.7808	0.7813


Number of Observations

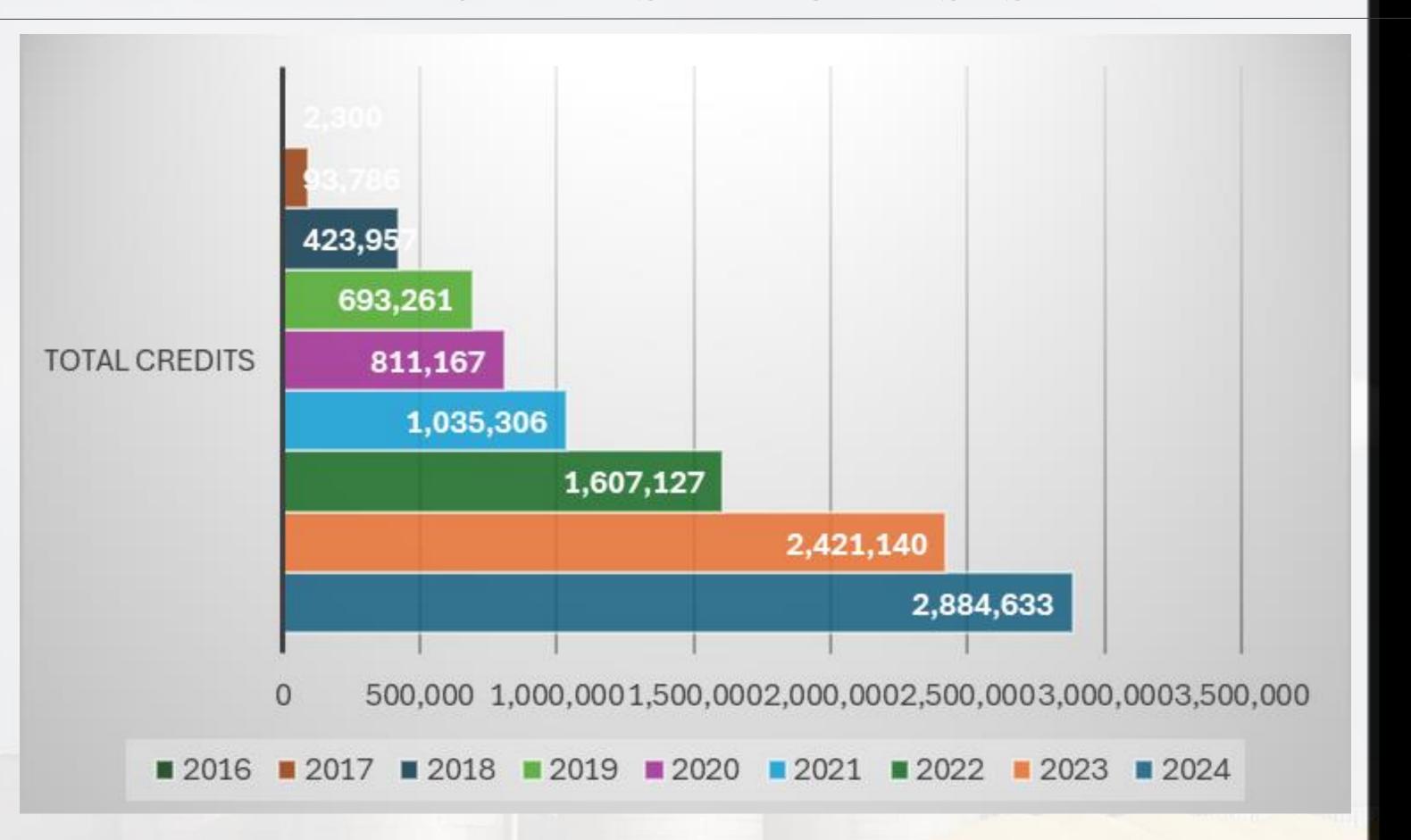

Bioenergy adoption significantly contributes to CI reduction.

Low-carbon transport options play a critical role.

 Average B5 CFP cost and E10 CFP are strong indicators of CI improvement.

MARKET-BASED MECHANISMS

 Credit transferred and total credit value reflect market activity.


Average credit prices influence stakeholder behavior.

Financial incentives are aligned with environmental goals.

MARKET-BASED MECHANISMS

POLICY IMPLICATIONS

• Expand CFP credit opportunities for advanced biofuels with low lifecycle emissions.

 Support research and development to improve feedstock conversion efficiency and reduce production costs.

 Create targeted incentives or subsidies for biorefineries using regionally abundant feedstocks (e.g., woody

POLICY IMPLICATIONS

 Integrate fuel switching (biofuels) with vehicle electrification & public transit expansion.

• Promote infrastructure development (e.g., renewable diesel pumps, EV chargers).

POLICY IMPLICATIONS

 Use average CFP credit prices as indicators of clean fuel market effectiveness.

 Ensure price transparency and stability in credit markets to attract investment.

For more questions, contact

chukwuemeka.okolo@oregons